Navigate to WaytoAGI Wiki →
Home/All Questions
请推荐1~2款适合初学者的AI编程助手和编程学习工具
以下是 1 2 款适合初学者的 AI 编程助手和编程学习工具: v0:适合初学者,能为编程提供一定的辅助和支持。 Bolt:对新手友好,有助于初学者在编程过程中获得帮助和指导。 此外,还有一些其他常见的适合初学者的工具,如 GitHub Copilot,它支持多种语言和 IDE,能为程序员快速提供代码建议;通义灵码,提供行级/函数级实时续写、自然语言生成代码等多种能力。您可以根据自己的需求选择最适合您的工具。
2025-03-18
有什么ai根据脚本完成鼠标键盘的自动化操作的学习吗
GPT4VAct 是一个多模态 AI 助手,能够模拟通过鼠标和键盘进行网页浏览。 应用场景:基于 AI 的能力、项目目标人群和服务内容类型,可用于以后互联网项目产品的原型设计自动化生成,使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 技术类型:AI 学习模型 简介:它可以模拟人类浏览网页时的行为,如点击链接、填写表单、滚动页面等。通过视觉理解技术识别网页上的元素,像人眼一样“看到”按钮、文本框、图片等,并理解其功能和用途。目的是让 AI 自动完成一些人工操作任务,提高工作效率,方便人们使用网页界面。 主要特点: 1. 视觉处理:能够处理视觉信息,但支持程度有限。 2. 自动标记:使用 JS DOM 自动标记器为 UI 元素分配数字 ID,支持 COCO 数据格式的导出。 3. 鼠标和键盘操作:能够执行点击和输入字符操作。 4. 特殊键码输入:目前不支持输入特殊键码(如回车、页面上移、页面下移)。 5. 其他功能:滚动、提示用户提供更多信息、记住与任务相关的信息等功能尚未支持。 工作原理:GPT
2025-03-18
会议纪要提示词
以下是为您提供的有关会议纪要提示词的相关内容: Claude 官方提示词: 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。任务是审查提供的会议记录,并创建一个简明扼要的总结,捕捉重要信息,重点关注会议期间分配给特定个人或部门的关键要点和行动项目。使用清晰专业的语言,并使用适当的格式(如标题、小标题和项目符号)以逻辑的方式组织总结。 Kimi 的 15 款官方提示词: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼 智能纪要示例: 模型部署与资源抢占:资源抢占策略包括通过更改配置、加价和更换资源类型等方式抢占资源,如以 3 元抢到资源,阿里云采用拍卖机制,更高价者获得闲置资源。 模型测试情况:对模型进行数值比较和排列组合题的测试,结果有对有错,加系统提示词有一定概率做对。 模型部署操作:从 32B 中蒸馏模型,部署过程中需竞价获取资源,如尝试获取 L20 卡,未成功则加价或更换为 H100 卡等。 代码相关操作:在 Notebook 中进行代码操作,需修改 key、base 等内容,根据硬件获取情况调整代码运行。 基于派平台的模型训练与微调:显存越大的模型一般越贵,如 H100。模型加载时间长与模型大小和读硬盘速度有关,如 34B 模型需占 68G 以上显存。数据蒸馏过程通过向模型提问题获取答案来蒸馏数据,作为训练数据的 question 和 answer,蒸馏数据通常需人工校对,微调模型所需数据量因领域宽窄而异。模型训练方式在派平台上进行训练,可选全仓微调等训练方法,需设置各项参数,如学习率、文本序列长度等,训练时长约 26 小时,价格约 800 元,训练好的模型可下载和部署。系统提示词在训练中让模型知道接受新训练,在推理时激发特定训练数据,取决于训练目的。
2025-03-18
想转型AI产品经理,推荐学习的资料有?
以下是为您推荐的学习资料,有助于您从产品经理转型为 AI 产品经理: 1. 林粒粒呀的相关视频,如“小白如何理解技术原理与建立框架”,其中介绍了思维链、RAG、PAL、ReAct 等概念,并且提到 Transformer 是仿生算法的阶段性实现。 思维链:谷歌在 2022 年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】。 RAG:检索增强生成(RetrievalAugmented Generation),外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 PAL:程序辅助语言模型(ProgramAided Language Model),2022 年一篇论文中提出,对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 2. 余一的相关内容,如《AI 时代个人生存/摸鱼探索指南.Beta》《从 2023 年报,看中国上市公司怎么使用生成式 AI》。 3. 相关网页链接: 创新公司观察: 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】: 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】
2025-03-18
有什么使用AI驱动的游戏项目吗?其中有哪些比较热门
以下是一些使用 AI 驱动的游戏项目及热门情况: 1. 《Among Us》:由只有 5 名员工的工作室 Innersloth 制作。 2. 《微软模拟飞行》:有新的游戏类型和与新内容实时生成结合的特点。 3. 《AI Dungeon》和《Hidden Door》:基于文本的早期游戏例子。 4. 《Suck Up!》:2023 年 12 月由 Proxima 工作室开发的“喜剧欺骗游戏”,玩家扮演吸血鬼与 LLM 驱动的 NPC 对话,上线仅两周全网播放火速突破千万。 此外,还有以下趋势和特点: 1. 由人工智能辅助的“微型游戏工作室”逐步崛起,小型工作室能创造的游戏规模将增长。 2. 每年发布的游戏数量会增加。 3. 新的游戏类型将会被创造出来,例如以人工智能创造的角色为特色的 Spellbrush 的 RPG 游戏 Arrowmancer。 4. 有的游戏开发商使用人工智能让玩家在游戏中创建自己的头像。 生成式 AI 将使生产高质量游戏变得更加简单、更快和更便宜,同时使玩家能够真正定制他们的游戏体验。我们已经看到像 Scenario、Iliad 这样可以创建游戏资源的 AI 工具,以及像 Promethean 这样可以构建整个虚拟世界的平台。甚至可以用像 Inworld、Charisma 和 Convai 这样的产品生成非玩家角色(NPC)。
2025-03-18
有没有适合记录会议纪要的AI
以下是一些适合记录会议纪要的 AI 工具和方法: 1. 案例一:【普通人秒变效率王】AI 工作流秒记会议纪要 视频讲解:https://m.okjike.com/originalPosts/65fa9d1112ed2fda68e6215e?s=eyJ1IjoiNTlhZDcyZDUwYjAyYTEwMDEyMjc3YmZmIiwiZCI6MX0%3D 工作流概述: 文本导出:使用飞书妙记将会议对话导出为 txt 文件 纪要生成:启动 Kimichat 输入会议纪要 prompt 提示词并上传 txt 文件 内容完善:与 Kimichat 对话并补充会议中未记录或需强调的信息 纪要微调:审阅 Kimichat 生成的会议纪要草稿进行必要微调 成品输出:确认会议纪要内容无误后,输出最终版文档 和 Kimichat 的完整对话(点击可直接复用并接着聊):https://kimi.moonshot.cn/share/cnsk08phmfr6s04umlrg 2. 总结类 AI 工具: 3. 免费的会议语音转文字工具: 飞书妙记:https://www.feishu.cn/product/minutes ,飞书的办公套件之一 通义听悟:https://tingwu.aliyun.com/home ,阿里推出的 AI 会议转录工具 讯飞听见:https://www.iflyrec.com/ ,讯飞旗下智慧办公服务平台 Otter AI:https://otter.ai/ ,转录采访和会议纪要 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-18
有没有写科研可行性分析报告的提示词之类工具
以下是一些关于写科研可行性分析报告的提示词相关内容: 可以先确定整个调研报告的大纲目录,比如通过老师发的示例报告截图用手机识别。 确定整体的语言风格和特色,调研报告一般和论文差不多,语言风格通常是“逻辑清晰,层层递进,条理分明”,还可以把范文丢给 Claude 2 总结语言风格。 让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一章节,否则重新生成。 在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再来撰写报告章节部分。 为了让 GPT4 有更好的选择性搜索,可以选择使用 webpolit 插件。 不要过于限制 GPT4,否则可能导致生成效果不佳。
2025-03-18
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索,为 Agents 提供长时间保留和回忆(无限)信息的能力。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Agent 可以是一个历史新闻探索向导。 身份:历史新闻探索向导 性格:知识渊博、温暖亲切、富有同情心 角色:主导新闻解析和历史背景分析 为使角色更生动,可为其设计简短背景故事,如曾是一位历史学家,对重大历史事件了如指掌,充满热情,愿意分享知识。 2. 写好角色个性的方法: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户认可,因为精准击中许多年轻人的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家 Robert Jeffrey Sternberg 提出了“爱情三角理论”,认为爱情包含“激情”“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-18
我自己想做一个英语背单词的游戏,让AI写出Markdown代码运行后,发现问题很大,但是我有不知如何修改这些代码。所以我觉得自己应该懂Markdown 代码语言。但是我不知道Markdown是最适合的编程语言吗?
Markdown 语言不太适合用于编写复杂的英语背单词游戏。虽然 Markdown 简单易用,常用于文档格式化,但在实现游戏逻辑和功能方面存在较大局限性。 如果您想开发英语背单词游戏,更适合使用编程语言,如 Python 等。在处理代码问题时,您可以参考以下方法: 1. 对于编程小白,向 AI 提供代码范例,尤其是新进入代码节点的 IDE 中的范例,减少对 AI 所写代码的改动。 2. 向 AI 说清楚输入变量与输出变量的类型。 3. 说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 列出输入变量的具体书写形式,对于复杂形式可使用特定方法获取。 5. 说清楚代码要实现的功能,复杂功能尽量将运行逻辑描述清楚,多用变量名称指代涉及的变量。 如果代码运行效果不尽人意,可把当前的代码、输入变量、预期结果提供给 AI,并告知错误的结果或者报错信息,让 AI 帮忙寻找问题并提供修改方案。提问时可参考以下方式: 以上是我目前的 python 代码,我的输入变量。 但是代码运行后的实际结果却是。 另外,在游戏开发与修改过程中,还需注意文件的存放要求、功能优化、平台上传等方面的问题。例如,三个重要文件需在一个文件夹,本地内置图像、音乐等也需在同一文件夹。游戏功能可增加关卡、调整金币获取和技能点花费、解决 Bug 等。研究将游戏发布到 4399 开放平台时,需注册、实名制,审核较严格。获取游戏素材可从官网免费下载或淘宝购买抠好的素材。
2025-03-18
如果喂给模型的数据样本量太少怎么办?
当喂给模型的数据样本量太少时,可以考虑以下方法: 1. 利用零样本提示:如今经过大量数据训练并调整指令的 LLM 能够执行零样本任务。指令调整已被证明可以改善零样本学习,如 Wei 等人(2022)所指出。此外,RLHF(来自人类反馈的强化学习)已被采用以扩展指令调整,推动了像 ChatGPT 这样的模型。当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。 2. 采用少样本提示:在机器学习和人工智能领域中,少样本提示是指当只有很少数量的标记样本可用于训练模型时,通过巧妙设计任务描述、提供相关背景知识或利用预训练模型等方法,引导模型在有限样本条件下更好地理解和解决任务。少样本提示对格式有很好的限定和约束作用,但推理问题响应稳定性差。 细节的格式限定: 字数限制:限制 ChatGPT 输出的文本长度,以避免输出过长或不合适的回复。可以设置最大字符数或最大字数来控制输出长度。 形式限定:限定输出内容的形式,比如回复领导邮件、工作周报等形式。 细节限制:对文本的格式进行优化,如标题使用斜体、语料使用引用格式、供给读者使用的文字使用代码格式、数据对比使用表格展示、流程化步骤使用流程表格式等。 需要注意的是,这些方法虽然能在一定程度上缓解样本量少的问题,但对于推理、计算等问题,可能需要进一步使用其他方法。
2025-03-18