FewShot 指的是在训练机器学习模型时只使用极少量的标注样本,其目标是使机器学习模型在只有少量标注样本的情况下也能达到良好的性能。
在写 Prompt 时,利用 FewShot 是一个非常实用的技巧,通过提供少数(1 3 个)的输入 > 输出示例,让 GPT 可以学到样本的共性,从而提升下一个输出结果的质量。比如在的基础上,增加一个结构块“Examples:”,在该结构块举 1 3 个示例,能进一步提升 Prompt 带来的输出结果。
与 ZeroShot 不同,FewShot 在 Prompt 中会给出简单的例子。这利用了大模型优秀的推理能力,根据给出的例子,大模型能很好地推理出需求并给出具体回答。使用 FewShot 能有更好回答效果的原因是提供了更多的上下文信息或额外知识,让大模型能更好地回答问题。
这种技术也被称为少拍提示(如果只提供一个示例,则称为一拍提示),特别适用于需要高度详细或需要结构化输出或遵守特定格式的任务。
2025-03-13