以下是关于联网检索的 AI 的相关信息:
存在能联网检索的 AI,它们通过连接互联网,实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。
例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网。
Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。
Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动。
还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。
常见的 AI 助手采用通过联网搜索获取实时信息。当用户开启联网搜索时,助手先将用户的请求发送至搜索引擎,再将返回内容与用户输入一起提供给大模型,最终生成回答。搜索引擎在此作为实时信息源,为大语言模型提供额外的上下文。
如果希望 AI 能提供行业内部信息、或者研发的自有系统内的信息,AI 联网搜索的效果就很不好,甚至无法实现。用户可以自行搭建 AI 代理,将自有系统的数据通过 API 的形式接入 AI 助手,为大语言模型补充提供丰富的上下文信息。
MCP 协议解决了 AI 大模型与数据源集成碎片化的问题,提供统一标准,让开发者无需为每个数据源和 AI 助手单独开发连接器。通过 MCP,数据源和 AI 工具可建立安全双向连接,使 AI 在不同工具和数据集间流畅协作,实现更可持续的架构。
在完成意图识别,确认需要联网检索之后,可以对用户的 query 进行改写(Rewrite)。Query Rewrite 的目的,是为了得到更高的检索召回率。Query Rewrite 可以通过设置提示词请求大模型完成,主要包括三个维度的改写:
让提问有更精准/更专业的表达。比如用户搜索“ThinkAny”,改写后的 query 可以是“ThinkAny 是什么?”,再把问题翻译成英文“ What is ThinkAny ”,同一个问题,双语分别检索一次,得到更多的参考信息。
补全上下文,做指代消解。比如用户搜索“ThinkAny 是什么?”,得到第一次回复后继续追问“它有什么特点?”,用历史对话内容作为上下文,把第二次 query 改写成“ThinkAny 有什么特点?”,指代消解后再去检索,会有更高的召回率。
名词提取。比如用户搜索“ThinkAny 和 Perplexity 有什么区别?”,可以把“ThinkAny”和“Perplexity”两个名词提取出来,分别检索。
提升 AI 搜索准确度,另一个关键措施就是做多信息源整合。结合上面提到的意图识别和问题改写,假设用户搜索“ThinkAny 和 Perplexity 的区别是什么?”,根据意图识别,判断需要联网,并且是信息查询类的搜索意图。在问题改写阶段,提取出来“ThinkAny”和“Perplexity”两个概念名词,除谷歌检索之外,还可以检索 Wikipedia/Twitter 等信息源,拿到百科词条内容和 Twitter 的用户反馈信息,可以更好地回答这个问题。AI 搜索最大的壁垒在于数据。
内容由 AI 大模型生成,请仔细甄别。
2025-04-09