Navigate to WaytoAGI Wiki →
Home/All Questions
CRM那些功能适合和ai结合
AIGC 在 CRM 中的应用主要包括以下几个方面: 1. 个性化营销内容创作:根据客户个人信息、购买历史、偏好等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成数据分析报告,包括文字、图表、视频演示等形式,加快报告生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 以下是一些与 AI 结合的 CRM 相关产品推荐: 1. Clay:一款 AI 驱动的联系人应用软件,自动整理联系人信息,帮助管理个人和职业人脉。 2. Promptden:提示词交流和交易社区,可探索、发现和分享从 ChatGPT 和 Bard 文本提示到 MidJourney、Stable Diffusion 等 AI 生成的图像。 3. Parthean AI:财务教练,将 AI 工具与个人财务信息集成,提供定制答案,帮助用户制定预算并规划财务目标。 4. TinyStudio:免费的 Mac 应用程序,利用 M1/M2 芯片为视频和音频文件生成字幕。 5. Pagegpt:提供个性化网页设计,生成文案和图片,帮助吸引和转化顾客。 此外,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLMs 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。例如,Omni 的计算 AI 功能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2025-04-09
Coze的论坛
Coze 是新一代一站式 AI Bot 开发平台,字节出品,中文名为扣子。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用字节自研的云雀大模型,国内网络可正常访问 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(访问需突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html ) AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。 搭建步骤: 1. 注册 Coze 账号: 访问 Coze 官网,快速注册。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze 英文版:https://coze.com/(支持大模型:chatgpt4) 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建你的机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。
2025-04-09
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
扩图
以下是关于扩图的相关内容: 在 SD 中,使用 ControlNet 插件进行扩图时,可以测试拿完全不相干的图片做参考,如将女孩坐在草地上的提示词不变,参考图片换成一筐草莓,能得到接近的色调,说明风格参考可作滤镜功能。用蒙娜丽莎、梵高的星空等参考会有不同效果。还可进行局部重绘,如将一张图发送到图生图,调整尺寸,用较小重绘幅度,进行局部重绘并修改正向提示词来扩充背景。此外,多个 ControlNet 通道结合能实现绘图风格控制。 Midjourney 的新编辑器功能强大,包括增加主体、扩图和添加文字。进入编辑器的方法是:打开 MJ 官网(https://www.midjourney.com),选择要修改的图片,点击右下角的 Editor 按钮。在扩图方面,以 2 只狐狸图为例,可在编辑器中自由放大、缩小或移动图片,点击生成即可完成扩图。 在 SD 中进行创成式填充扩图时,以某张图为例导入图生图界面,根据情况选择大模型,设置重要参数,如“缩放模式”选择“缩放后填充空白”,调整尺寸、单批数量和重绘幅度等。ControlNet 的设置包括升级版本、导入图片、启用插件、选择控制类型和模式等,还可增加 reference_only 通道巩固风格。通过反推提示词增加文本控制能影响出图,但效果不一定每次都好,可能存在色差,需调整参数修正。用真实系模型扩展建筑图时,调整尺寸并放入图生图和 ControlNet 中即可。记住工作流,扩图会很快。
2025-04-09
学习路径文档
以下是为您提供的新手学习 AI 的路径文档: 首先,了解 AI 基本概念。建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 然后,开始 AI 学习之旅。在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 接着,选择感兴趣的模块深入学习。AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您掌握提示词的技巧,它上手容易且很有用。 之后,进行实践和尝试。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 最后,体验 AI 产品。与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,雪梅 May 的 AI 学习经验也值得参考。May 发现自己的学习路径是:迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。特别是学习 coze 的路径:输入→模仿→自发创造,这是她真实实践下来之后发现的学习规律。May 还提到,虽然费曼学习法告诉我们,学习最好的方式是教会别人,但在一开始学习 AI 时,自学和输入为主也是可行的。回想起来,如果能量更足、更有勇气,可以更早地开始输出倒逼输入。不过不要为难自己,只要迈开脚步,就是进步。
2025-04-09
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
多张图片生成宣传视频
以下是关于多张图片生成宣传视频的相关内容: ComfyUI AniamteDiff 图片融合视频: 模型:加载用到两个 lora,一个是 Animatediff v3_sd15_mm 运动模型需要的 v3_sd15_adapter,lora 强度越高画面越稳定,但需在合理范围;另一个 more_details 用于给画面添加更多细节,模型和工作流会放在网盘里。 参数设置:上传 4 张图片,并使用 image batch 复制图像制作批次,这是为了在使用 IPAdapter 时让每一帧都能参考上传的图片,使风格迁移更像,上传的蒙版视频用于在帧与帧之间做遮罩过渡,添加动态效果。 IPAdapter:用于图像的风格迁移,对应四张图片。使用遮罩控制每张图片显示的帧数,从第 0 帧开始计算,一张图片 16 帧,加上中间过渡的 8 帧,在创建遮罩时,需要显示的帧设置为 1,隐藏的为 0,以此类推,将 4 张图片融合成 96 帧的序列,并使用遮罩控制每一帧显示的画面。 流量密码!小红书万赞英语视频用扣子一键批量生产: 原理分析:这种视频由多张不同的带文字的图片生成,主要是教英语的内容,读到哪句哪句高亮,图片也随句子变化。视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,音频由文字生成,最主要的是把图片和文字搞出来。 找模版:逻辑理清后先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来才有资格继续思考如何把图片变成视频。
2025-04-09
联网检索的ai
以下是关于联网检索的 AI 的相关信息: 存在能联网检索的 AI,它们通过连接互联网,实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。 例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 常见的 AI 助手采用通过联网搜索获取实时信息。当用户开启联网搜索时,助手先将用户的请求发送至搜索引擎,再将返回内容与用户输入一起提供给大模型,最终生成回答。搜索引擎在此作为实时信息源,为大语言模型提供额外的上下文。 如果希望 AI 能提供行业内部信息、或者研发的自有系统内的信息,AI 联网搜索的效果就很不好,甚至无法实现。用户可以自行搭建 AI 代理,将自有系统的数据通过 API 的形式接入 AI 助手,为大语言模型补充提供丰富的上下文信息。 MCP 协议解决了 AI 大模型与数据源集成碎片化的问题,提供统一标准,让开发者无需为每个数据源和 AI 助手单独开发连接器。通过 MCP,数据源和 AI 工具可建立安全双向连接,使 AI 在不同工具和数据集间流畅协作,实现更可持续的架构。 在完成意图识别,确认需要联网检索之后,可以对用户的 query 进行改写(Rewrite)。Query Rewrite 的目的,是为了得到更高的检索召回率。Query Rewrite 可以通过设置提示词请求大模型完成,主要包括三个维度的改写: 让提问有更精准/更专业的表达。比如用户搜索“ThinkAny”,改写后的 query 可以是“ThinkAny 是什么?”,再把问题翻译成英文“ What is ThinkAny ”,同一个问题,双语分别检索一次,得到更多的参考信息。 补全上下文,做指代消解。比如用户搜索“ThinkAny 是什么?”,得到第一次回复后继续追问“它有什么特点?”,用历史对话内容作为上下文,把第二次 query 改写成“ThinkAny 有什么特点?”,指代消解后再去检索,会有更高的召回率。 名词提取。比如用户搜索“ThinkAny 和 Perplexity 有什么区别?”,可以把“ThinkAny”和“Perplexity”两个名词提取出来,分别检索。 提升 AI 搜索准确度,另一个关键措施就是做多信息源整合。结合上面提到的意图识别和问题改写,假设用户搜索“ThinkAny 和 Perplexity 的区别是什么?”,根据意图识别,判断需要联网,并且是信息查询类的搜索意图。在问题改写阶段,提取出来“ThinkAny”和“Perplexity”两个概念名词,除谷歌检索之外,还可以检索 Wikipedia/Twitter 等信息源,拿到百科词条内容和 Twitter 的用户反馈信息,可以更好地回答这个问题。AI 搜索最大的壁垒在于数据。 内容由 AI 大模型生成,请仔细甄别。
2025-04-09
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09