Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

国内外语言大模型评估

Answer

国内外对于语言大模型(Large Language Models, LLMs)的评估通常涉及多个方面,包括但不限于模型的性能、应用效果、伦理和安全性等。以下是一些评估的维度和考虑因素:

性能评估:

  1. 准确性:模型在特定任务上的表现,如文本分类、情感分析、机器翻译等。
  2. 泛化能力:模型对于未见过的数据的处理能力。
  3. 鲁棒性:模型抵抗输入扰动和异常值的能力。
  4. 响应时间:模型处理请求的速度。

应用效果评估:

  1. 用户体验:模型在实际应用中的用户满意度和接受度。
  2. 业务影响:模型对业务流程和效率的影响。
  3. 成本效益:模型的运行成本与其带来的效益之间的比较。

伦理和安全性评估:

  1. 偏见和公平性:模型是否存在潜在的偏见,是否对所有用户群体公平。
  2. 隐私保护:模型是否符合数据保护法规,用户数据是否安全。
  3. 透明度:模型的决策过程是否透明,用户是否了解其工作原理。
  4. 可解释性:模型的输出是否可解释,用户能否理解其决策逻辑。

国内外评估实践:

  1. 学术评估:学术界通过发表研究论文来评估和比较不同模型的性能。
  2. 行业报告:市场研究机构发布报告,评估模型的市场占有率和用户反馈。
  3. 标准化测试:如MLPerf等组织提供的标准化测试,用于评估和比较不同模型的性能。
  4. 开源社区:开源社区通过共享测试数据集和基准来评估模型性能。
  5. 企业内部评估:企业内部通过实际应用场景来测试和评估模型的效果。

评估工具和平台:

  • 国际:MMLU、GSM8K等。
  • 国内:C-Eval、SuperCLUE等。

注意事项:

  • 跨文化差异:不同文化背景下的语言使用习惯可能影响模型评估。
  • 法规遵从:评估时需考虑不同国家的法律法规,如欧盟的GDPR。

进行语言大模型评估时,需要综合考虑上述多个维度,并结合具体的应用场景和业务需求。同时,随着技术的发展和市场的变化,评估标准和方法也在不断演进。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
AI应用于教育行业在评估和认证机制的改革方面的问题
AI 应用于教育行业在评估和认证机制的改革方面存在以下问题: 1. 教育体系具有惯性,课程设置、教师资格认证、学术评价体制等均有深厚传统根基,更新和调整需要时间,资源重新配置无法一蹴而就,大规模改革提案的决策流程涉及多方利益博弈,是长期议程。 2. 现有的教育体系追求稳定性和标准化,而非灵活性和快速响应,抵制变动,本质上较为保守,与 AI 引领的教育创新所需的快速试错和持续迭代能力脱节。 3. 教育政策更新滞后,政策制定者对新兴技术理解不足,无法充分预见技术对教育的长远影响,政策调整受预算限制、法规约束和政治周期影响,过程缓慢。 4. 技术与政策的脱节体现在教师的培训和招聘上,多数教师未接受相关培训,不仅要掌握工具操作,还需了解如何与教学目标结合,当前教师培训和专业发展项目在数量和质量上与需求存在差距。 5. 现有评估和认证机制侧重于传统学习方法和结果,学校和教师受其约束,创新的教育实践难以得到认可,甚至可能因偏离既定评价标准而遭质疑。
2025-02-10
AI可行性评估报告
以下是为您提供的关于 AI 可行性评估报告的相关内容: 一、关于 AI 责任和新技术的提案 1. 该提案建立在 4 年的分析和利益相关者(包括学者、企业、消费者协会、成员国和公民)的密切参与基础上。 2. 准备工作始于 2018 年,成立了责任和新技术专家组。专家组于 2019 年 11 月发布报告,评估了 AI 的某些特征对国家民事责任规则构成的挑战。 3. 专家组报告的输入得到了三项额外外部研究的补充: 基于欧洲侵权法对关键 AI 相关问题的比较法律研究。 关于责任制度有针对性调整对消费者决策(特别是他们对采用 AI 支持的产品和服务的信任和意愿)影响的行为经济学研究。 涵盖一系列问题的经济研究,包括 AI 应用的受害者与非 AI 设备的受害者在试图获得损失赔偿时面临的挑战;企业对当前责任规则在其涉及 AI 的业务中的应用是否不确定以及不确定程度;法律不确定性的影响是否会阻碍对 AI 的投资;国家责任法的进一步碎片化是否会降低 AI 应用和服务的内部市场的有效性,以及通过欧盟立法协调国家民事责任的某些方面是否会减少这些问题并促进欧盟公司对 AI 技术的总体采用。 二、AI 相关的其他内容 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,可使用“退后一步”提示词,让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势是避免错误方向的持续生成,促使模型输出新的思考过程。但如果模型输出内容已过于冗杂,建议修改原始提示词。 2. AI 对程序员工作的影响分析:AI 可代替代码生成、补全、分析问题和数据提取、辅助架构设计文档等部分;无法代替需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。专业程序员可通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。 3. AI 应用场景:可从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。适合验证新闻、访谈或声明的真实性,发现潜在问题。 三、关于 AI 的创新方法 1. 政府已通过发布相关内容支持工具的开发。 2. 提出关于非监管工具对组织嵌入可信 AI 的帮助。 3. 包括长期规划,如交付确保框架有效的核心功能的首次迭代、与关键监管机构合作、发布草案咨询、开发监管沙盒或试验台、发布监测和评估报告、更新 AI 监管路线图等。
2025-01-22
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
怎么评估提示词的效果?
评估提示词的效果可以从以下几个方面进行: 1. 模型的准确率:观察模型生成的回答与预期结果的匹配程度。 2. 流畅度:检查生成的文本在语言表达上是否通顺、自然。 3. 相关性:判断生成的内容与提示词所表达的意图和需求的关联程度。 提示词工程师在评估提示词效果时,通常会采取以下步骤和方法: 1. 设计提示:根据用户需求和模型能力,精心考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式,不断改进提示。 3. 实际测试:包括对基础提示词模板的测试,确保其能兼容国内外各种模型,并生成拟人化的提示词,然后将其应用于不同模型中评估实际应用效果和适应性。 此外,提示工程有几项核心原则: 1. 编写清晰的指令。 2. 将复杂任务分解为简单任务。 3. 给模型一定的时间空间思考。 4. 系统地测试性能变化。 要提高提示技巧,应多学习和实践。同时,可以参考大模型厂商的提示工程指南,以及 LangGPT 结构化提示词知识库中的相关资料,如:
2024-10-15
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
英语教育,如何实现agi,目前这方面,国内外,哪些公司走在前面?
在英语教育领域实现 AGI 方面,目前国内外走在前面的公司情况如下: 在国外,OpenAI 表现突出,ChatGPT 和 GPT4 的出现令人惊讶,其成功拉开了与国内的技术差距。 在国内,百度和阿里相对较为高调。百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。然而,国内大厂们虽然在人才、GPU、数据和资金储备方面具备冲击 AGI 的条件,但实际效果尚未有明确亮点。2023 年中美在 AGI 技术上的差距并未缩小,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,与 GPT4 仍有不小差距,甚至不如临时拼凑的 Mistral 团队的水平。此外,大厂们受内部短期考核压力影响,多数力量放在卷新产品圈地盘和向上汇报工作上,且同时背负了较多其他业务和政治考量。
2025-03-04
对于物联网的智能台灯设计,你给我写一下国内外的发展现状,但不能完全抄袭,查重率百分之十
目前,在国内外物联网智能台灯的发展呈现出以下现状: 国内方面,随着物联网技术的迅速发展,智能台灯的市场逐渐扩大。许多企业纷纷投入研发,注重产品的智能化功能,如通过手机 APP 实现远程控制、亮度和色温调节等。同时,一些产品还融入了语音控制功能,提升了用户的使用体验。然而,在产品的稳定性和兼容性方面,仍存在一定的改进空间。 国外方面,智能台灯的设计更加注重人性化和创新性。例如,一些产品在外观设计上更加时尚美观,能够与不同的家居风格相融合。在技术应用上,国外的智能台灯更加注重与其他智能家居设备的互联互通,形成完整的智能家居生态系统。但部分产品价格较高,限制了其在大众市场的普及程度。
2025-02-28
AI安全治理这个方向的国内外的团队和人
以下是 AI 安全治理方向的国内外团队和人员相关信息: 美国:拜登签署了 AI 行政命令,美国政府已就 AI 治理框架与多国进行了广泛协商,包括澳大利亚、巴西、加拿大、智利、欧盟、法国、德国、印度、以色列、意大利、日本、肯尼亚、墨西哥、荷兰、新西兰、尼日利亚、菲律宾、新加坡、韩国、阿联酋和英国等。此外,美国迅速跟进世界首个人工智能安全研究所 AISA,美国能源部也一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 英国:创建了世界上第一个人工智能安全研究所 AISA,AISA 有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。 OpenAI:OpenAI LP 约有 100 名员工,分为技术能力(推动 AI 系统功能发展)、安全保障(确保系统符合人类价值观)和政策治理(确保适当治理系统)三个主要方向。
2025-02-20
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31