Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多智能体适合在什么场景下应用

Answer

多智能体适合应用的场景较为广泛,常见的有以下几种:

  1. 集中式调度:适用于需要全局协调的场景,如机器人协作、交通管制等。在这种模式下,有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。
  2. 分布式调度:常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。
  3. 市场驱动调度:适用于电力负载调度、计算资源分配等领域。智能体通过竞价机制获取资源和任务分配,类似于现实市场的供需规律。
  4. 约束优化调度:适用于任务分配、资源规划等约束严格的场景。将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。
  5. 组织结构调度:常见于多机器人协作、组织自动化系统中。根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。
  6. 基于规范协议的调度:

此外,以旅游场景为例,在设计需要多轮协作的智能体时,比如设计分别负责景点推荐、路线规划和食宿安排的三个智能体,应在多智能体编排页面中设计为一个闭环结构,确保用户在整个对话过程中能够自由地在不同智能体之间切换。同时,要注意跳转设置问题,扣子在节点切换提供了独立和非独立两种识别模式。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有哪些常见的 multi agent 调度模式?

在多智能体(Multi-Agent)系统中,常见的调度模式主要有以下几种:1.集中式调度(Centralized Scheduling)在这种模式下,有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。1.分布式调度(Distributed Scheduling)每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P网络等。1.市场驱动调度(Market-Driven Scheduling)智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。1.约束优化调度(Constraint Optimization Scheduling)将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。1.组织结构调度(Organizational Structuring)根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。1.基于规范协议的调度(Norm-based Scheduling)

一文读懂扣子上的多 Agent 模式

此外,在观察这张图时,大家还可以发现一个关键点:我们在图中实现的是一个循环机制,而不是单向的流程。如果仅仅采用单向流程,那么将像工作流一样,随着对话的进行逐步跳转,直至最后一个智能体。在这种情况下,将无法从最后一个智能体跳转回初始状态。因此,在设计需要多轮协作的智能体时,我们应该在多智能体编排页面中,设计这些智能体的交互为一个闭环结构。这确保了用户在整个对话过程中能够自由地在不同智能体之间切换,克服了单向交互的限制。让我们通过一个具体的例子来更好地理解这一概念。以旅游场景为例,我们将设计三个智能体:分别负责景点推荐、路线规划和食宿安排。让我们先把提示词写出来。同时,我们还应做好全局人物设定:当准备好提示词后,就可以开始在扣子上进行编排了,这里我省略了创建和填充的步骤,最终呈现的效果是这样的:这里有几个关键点需要注意,首先是跳转设置问题。扣子在节点切换提供了独立和非独立两种识别模式,其中独立识别模式是像我们在之前的流程图中看到的:每个节点都有一个独立识别模型。

一文读懂扣子上的多 Agent 模式

此外,在观察这张图时,大家还可以发现一个关键点:我们在图中实现的是一个循环机制,而不是单向的流程。如果仅仅采用单向流程,那么将像工作流一样,随着对话的进行逐步跳转,直至最后一个智能体。在这种情况下,将无法从最后一个智能体跳转回初始状态。因此,在设计需要多轮协作的智能体时,我们应该在多智能体编排页面中,设计这些智能体的交互为一个闭环结构。这确保了用户在整个对话过程中能够自由地在不同智能体之间切换,克服了单向交互的限制。让我们通过一个具体的例子来更好地理解这一概念。以旅游场景为例,我们将设计三个智能体:分别负责景点推荐、路线规划和食宿安排。让我们先把提示词写出来。同时,我们还应做好全局人物设定:当准备好提示词后,就可以开始在扣子上进行编排了,这里我省略了创建和填充的步骤,最终呈现的效果是这样的:这里有几个关键点需要注意,首先是跳转设置问题。扣子在节点切换提供了独立和非独立两种识别模式,其中独立识别模式是像我们在之前的流程图中看到的:每个节点都有一个独立识别模型。

Others are asking
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
我想找一款适合做标书的ai工具
以下是一些适合做标书的 AI 工具: AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,声称可以帮助企业撰写更强的提案,提高中标率。该公司获得了来自 Blossom Capital 的 2230 万美元投资,用于招聘更多人才、扩展平台和增加客户群。其软件可以将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。 如果您还想了解生成 Logo 的 AI 产品,有以下选择: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计。 LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的设计元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入快速生成方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20
2025-04-11
适合搭建应用的AI
以下是一些适合搭建应用的 AI 相关信息: Menlo Ventures 指出生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。其投资组合公司在这些类别中有早期突破性的代表,中心是 LLMs 的少样本推理能力。但生成式人工智能的承诺不止于此,领先的应用程序构建商正在建立解决方案处理大量人力工作流程。借助多步逻辑等新型构建块,下一波智能体正在拓展 AI 能力边界,实现端到端流程自动化。在深入探讨人工智能体领域时,将概述 Menlo 对新兴市场的论点,包括定义智能体及使其成为可能的因素,追溯现代人工智能技术栈的架构演化过程,探讨范式转变对应用和基础设施层面的影响。 第一期「AI 实训营」手把手学 AI,在阿里云百炼从零搭应用。阿里云百炼是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,提供生成式大模型的应用编排搭建能力和企业大模型的全链路训练部署能力。其核心能力和优势包括大模型 API 服务、AI 应用搭建、模型在线训练部署等。目标客户群体包括有开发经验的企业或独立开发者,期望通过“企业知识+大模型”降本增效的企业,以及有算法和技术人力、有丰富企业数据、期望拥有专属大模型的企业。 目前企业正在自行构建而非购买应用程序,重点主要放在自主构建应用程序上,基础模型的出现使企业更易通过 API 构建自己的 AI 应用程序。企业正在构建常见应用,也在尝试更新颖的应用。关于“GPT wrappers(GPT 套壳)”的局限性已有诸多讨论,目前尚不清楚当更多面向企业的 AI 应用上市时情况是否会变化。那些能在“LLM+UI”公式之外创新,并显著重新思考企业基本工作流程或帮助企业更好利用专有数据的应用,将在市场上表现出色。
2025-04-10
CRM那些功能适合和ai结合
AIGC 在 CRM 中的应用主要包括以下几个方面: 1. 个性化营销内容创作:根据客户个人信息、购买历史、偏好等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成数据分析报告,包括文字、图表、视频演示等形式,加快报告生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 以下是一些与 AI 结合的 CRM 相关产品推荐: 1. Clay:一款 AI 驱动的联系人应用软件,自动整理联系人信息,帮助管理个人和职业人脉。 2. Promptden:提示词交流和交易社区,可探索、发现和分享从 ChatGPT 和 Bard 文本提示到 MidJourney、Stable Diffusion 等 AI 生成的图像。 3. Parthean AI:财务教练,将 AI 工具与个人财务信息集成,提供定制答案,帮助用户制定预算并规划财务目标。 4. TinyStudio:免费的 Mac 应用程序,利用 M1/M2 芯片为视频和音频文件生成字幕。 5. Pagegpt:提供个性化网页设计,生成文案和图片,帮助吸引和转化顾客。 此外,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLMs 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。例如,Omni 的计算 AI 功能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2025-04-09
我想学AI,那么coze是否适合拿来练手学习AI
Coze 适合拿来练手学习 AI,原因如下: 其在智能体开发方面,低代码或零代码的工作流等场景表现较好。 对于没有代码基础和图文审美的人来说,门槛较低。 能让学习者短时间接触大量的应用场景练习和 prompt 练习。 有相关的教学资源,例如从操作界面、业务逻辑和用户界面的学习教程,还有关于数据库等概念的细化讲解。 但同时需要注意,AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。
2025-04-01
比较适合语音克隆的有哪些AI
以下是一些适合语音克隆的 AI: :能将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 此外,还有以下相关信息: DubbingX2.0.3 中的海螺 AI 配音可以进行语音克隆,操作时需上传语音、命名声音、选择语言,原音频若有背景音乐最好在剪影中去除以保证生成的音色模型效果好且纯净。去除原音频背景杂音可通过打开剪映,按以下步骤操作:打开剪映,点击开始创作,导入原始音频或视频。 StepAudio:130B 语音文本多模态模型开源,集成语音识别、语义理解、对话生成、语音克隆、音频编辑、语音合成等功能,成本低质量高的语音克隆,支持“蒸馏”技术简化为更轻量版。
2025-03-31
最适合搭建本地个人知识库的ai是什么
以下是一些适合搭建本地个人知识库的 AI 相关技术和工具: 1. RAG(Retrieval Augmented Generation)技术:利用大模型的能力搭建知识库,其应用包括文档加载(从多种来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)和输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Open WebUI:一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,是构建知识库的基础之一)。如果要求不高,通过其可实现本地大模型的对话功能。 3. AnythingLLM:包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。安装完成后,配置主要分为三步,包括选择大模型、文本嵌入模型和向量数据库。在 AnythingLLM 中,有 Workspace 的概念,可创建工作空间,上传文档并进行文本嵌入,还提供了 Chat 模式(综合给出答案)和 Query 模式(仅依靠文档数据给出答案)两种对话模式。
2025-03-28
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13