Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion快速

Answer

以下是关于如何快速上手 Stable Diffusion 的相关内容:

一分钟生成自己的二次元造型

  • 利用图生图功能,使用自己的照片生成二次元照片。
  • 更换能生成二次元照片的大模型。
  • 输入正面关键词,如“高质量,高清画质,大师杰作,极致的细节,8k,主体就是一个女孩”。
  • 复制前面提供的负面关键词。
  • 在空白处上传需要生成的照片。
  • 调整重绘幅度,生成二次元照片时拉到 0.6 - 0.8 左右。

写好关键词,让你事半功倍

  • 先写质量词,然后描述照片主体及细节,如“一个女孩,非常精致的五官,极具细节的眼睛和嘴巴,长发,卷发,细腻的皮肤,大眼睛”,并翻译成英文。
  • 描述人物服装,如“白色的毛衣、项链(white sweater,necklace,)”。
  • 加上其他元素,如背景、天气、照片姿势、构图等,如“在街上,阳光,上半身照片(street,Sunshine,upper body photos,)”。
  • 推荐一行一行分开类型写关键词,每行末尾加上英文逗号。

按照以上步骤和方法,您可以更快速地掌握 Stable Diffusion 的使用技巧。

Content generated by AI large model, please carefully verify (powered by aily)

References

教程:超详细的Stable Diffusion教程

大家有没有试过花二三十块钱,把自己的照片发给别人,让人家帮自己生成一张二次元画风的照片拿来当头像然后别人含泪血赚19.9,还有一毛钱是电费今天看到这篇文章你就省钱啦!Stable Diffusion不用一分钟,不管你是要2.5D还是2D的照片,它都能生成!这里我们用到的是图生图里面的功能我们是要用自己的照片生成一张二次元的照片一定要记得换大模型!!选一个能生成二次元照片的大模型就可以至于正面关键词呢我们只要输入照片质量和主体的关键词就可以比如我这里输入的就是:高质量,高清画质,大师杰作,极致的细节,8k,主体就是一个女孩负面关键词我们就复制前面给大家的就可以啦接着我们就在这个空白的地方点击上传自己需要生成的照片接着鼠标往下移,找到“重绘幅度”重绘幅度的意思就是你要改变你原来照片的程度当你的重绘幅度拉到1,这时候就相当于要完全改变你的照片,生成出来的照片就跟原先的照片毫无关系了这里如果大家是要生成二次元照片的,把重绘幅度拉到0.6~0.8就差不多了,大家可以多试试几个参数这样设置下来一分钟都不用!就可以生成自己的二次元造型,大家就省下20块钱啦!

我用Stable Diffusion做电商!

[title]我用Stable Diffusion做电商!wearing the light green dress,fashion photography,studio light,.35mm photograph,film,bokeh,professional,4k,highly detailed.award-winning,professional,highly detailed,Negative prompt:ugly,disfigured,lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurrySteps:20,Sampler:DPM++ 2M Karras,CFG scale:7,Seed:3748048683,Size:362x486,Model hash:7c819b6d13,Model:majicmixRealistic_v7,VAE hash:c6a580b13a,VAE:vae-ft-mse-840000-ema-pruned.safetensors,Denoising strength:0.75,Clip skip:2,Mask blur:2,ControlNet 0:"Module:none,Model:control_v11p_sd15_openpose[cab727d4],Weight:1,Resize Mode:Crop and Resize,Low Vram:False,Processor Res:512,Guidance Start:0,Guidance End:1,Pixel Perfect:True,Control Mode:My prompt is more important",Version:v1.6.0换个手链,不要手表了额换饰品o(* ̄▽ ̄*)ブprompts & parametersbreathtaking cinematic photo,masterpiece,best quality,(photorealistic:1.33),blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands,bracelet,wearing the light green dress,fashion photography,studio light,.35mm photograph,film,bokeh,professional,4k,highly detailed.award-winning,professional,highly detailed,

教程:超详细的Stable Diffusion教程

[title]教程:超详细的Stable Diffusion教程[heading1]三、小白快速上手Stable Diffusion[heading2]2.写好关键词,让你事半功倍[heading3]01.正面关键词写完质量词,接着就是我们照片的内容先写的就是照片的主体,和对主体的细节描写比如我们是要生成一个女孩,就要写出来一个女孩,以及这个女孩长什么样也可以写出来也就是:一个女孩,非常精致的五官,极具细节的眼睛和嘴巴,长发,卷发,细腻的皮肤,大眼睛翻译成英文就是:1girl,very delicate features,very detailed eyes and mouth,long hair,curly hair,delicate skin,big eyes,这些照片内容大家都是可以随意改的,但是像精致的五官、细节的眼睛这类词语,大家可以都加上去写完五官之后,我们就可以想一下让照片的人物穿什么衣服,裤子,或者加上帽子之类的配饰像裙子、毛衣、牛仔裤、比基尼都可以,还可以写上衣服的颜色比如:白色的毛衣、项链(white sweater,necklace,)最后我们就可以写上其他乱七八糟的东西,比如背景、天气、照片姿势、构图等等比如说:在街上,阳光,上半身照片(street,Sunshine,upper body photos,)好啦,这样一套下来,我们的关键词就写的差不多了推荐大家像我这样一行一行分开类型去写关键词,这样后面想要改词更好找但一定要注意每一行的最后要加上英文逗号,否则它就会跟下一个单词连起来变成一个新单词总结一下我们写关键词的公式:画质+主体+主体细节+人物服装+其他(背景、天气、构图等)好,现在我们新生成了一张照片,但是发现她并没有我关键词里的卷发,

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
我想要一个助手,能帮助我快速计算式子
如果您想要一个能帮助快速计算式子的助手,可以通过以下步骤实现: 1. 搭建示例网站: 创建应用:点击打开提供的函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相应位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,此时网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 此外,零代码自建决策助手可以帮您解决生活中的决策问题,决策链设计包括: 1. 加权得分计算:将每个选项在各个标准上的得分与相应的权重相乘,然后求和,得出每个选项的总加权得分。 2. 机会成本分析:考虑选择每个选项时可能放弃的其他机会。 3. 简单情景分析:为每个选项构想最佳和最坏的情况。 4. 决策矩阵分析:将前面步骤的分析结果汇总到一个表格中,包括预期收益、机会成本、净收益、长期影响和风险评估。 决策阶段包括: 1. 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。 2. 情感检验:反思个人对每个选项的情感反应,并考虑其与理性分析的一致性。 3. 提供最终决策建议:基于前面的所有分析,提出一个综合的建议。 案例——帮你选工作: 假设您是一名在职的产品经理,想跳槽并拿到两个不错的 offer,向决策助手求助。整个流程始于您向决策助手提出问题,决策助手随即要求您提供 offer 的基本信息。在您提供完信息后,决策助手开始定义基本的评估标准,并让您审核,还会根据您的喜好和目标给出权重分配的建议。在您认可权重分配后,决策助手对每个选项进行评分,评分采用 1 到 10 分的制度,涵盖所有评估标准。评分完成后,决策助手会整理出一个清晰的表格,包含各项评估标准的权重以及每个选项在各个标准下的得分。
2025-04-12
物质三态变化图,用什么ai工具能快速绘制?
以下是一些可以快速绘制物质三态变化图的 AI 工具: 1. 麻省理工学院与瑞士巴塞尔大学合作开发的机器学习框架,利用生成式人工智能模型自动绘制物理系统的相图,几乎无需人类监督。 2. 在软件架构设计中,以下工具可用于绘制相关视图,包括物质三态变化图: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括物质三态变化图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 ArchiMate:开源的建模语言,与 Archi 工具一起使用可创建相关视图。 Enterprise Architect:强大的建模、设计和生成代码的工具。 Microsoft Visio:广泛使用的图表和矢量图形应用程序。 draw.io(现在称为 diagrams.net):免费的在线图表软件。 PlantUML:文本到 UML 的转换工具。 Gliffy:基于云的绘图工具。 Archi:免费的开源工具。 Rational Rose:IBM 的 UML 工具。 此外,Photoshop 2023 Beta 爱国版在某些图像处理和绘图方面也具有一定的能力,但可能不是专门针对物质三态变化图的绘制。
2025-04-11
如何快速上手Cursor、Windsurf、V0.dev、bolt.new、Devin等AI编程产品的经验,能快速转型为AI产品经理?
以下是关于快速上手 Cursor、Windsurf、V0.dev、bolt.new、Devin 等 AI 编程产品并转型为 AI 产品经理的一些经验: 1. 深入理解用户场景和 AI 能力边界:要构建差异化的 AI Native 体验,需要同时对 AI 能力边界和用户场景有深入洞察。 2. 持续迭代产品:在快速变化的模型能力下,避免在每次的基座模型迭代中掉队或被淘汰。 3. 构建良好的模型产品化能力和基础设施:使得应用可以持续收集用户数据以迭代模型。 对于具体的产品: Cursor: 允许用自然语言描述需求,对上下文有深度理解能力,能理解整个项目的结构和依赖关系,进行跨文件的语义分析。 提供智能的代码重构建议,自动诊断和修复常见错误,基于代码自动生成文档。 但要注意,即使有 AI 辅助,当好产品经理也不容易,需要反复沟通和调整。 Devin:作为 2024 年横空出世的产品,预示着软件开发范式的根本转变。 Windsurf、V0.dev、bolt.new 等: 可以使用如 Cursor Composer 构建产品、使用 Bolt.new 构建产品、使用 V0.dev 生成组件等。 此外,国内知名的 AI 全栈开发者 @idoubi 分享了相关使用经验,包括自动补全代码、Debug&&Fix Error、实时对话&&联网搜索、写提示词、写前端页面、截图生成组件、写常用的代码逻辑/函数、代码重构、多语言翻译等方面。同时,对于零代码基础的人员,也有使用相关工具实现想法的方法,如使用 Cursor Composer、Bolt.new、Claude 等构建不同类型的应用。还可以盘点常用的 AI 辅助编程工具和使用场景,如 AI 编辑器(Cursor、Windsurf、Pear Al 等)、编辑器 AI 扩展(Github Copilot、Continue、Cline 等)、UI 组件生成工具(Cursor、V0.dev、Claude、screenshottocode 等)、完整项目构建工具(Cursor、Bolt.new、Replit Agent、Wordware 等)。
2025-04-10
如何快速成为一名ai产品经理
要快速成为一名 AI 产品经理,可以参考以下步骤: 1. 入门级:通过 WaytoAGI 等开源网站或相关课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉传统互联网中偏功能实现的产品经理和偏商业运营的产品经理的工作,最好能将两者结合。 3. 落地应用级:拥有成功落地应用的案例,产生商业化价值。 同时,对 AI 产品经理的要求是懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 本质上是工具和手段,产品经理要关注的还是场景、痛点、价值。 此外,当 AI 与多维表格结合,为用户带来了更多可能性,任何人都能通过多维表格成为 AI 产品经理。例如在一些活动中,如多维表格 AI Maker Day,参与者来自不同领域和岗位,有着各自的优势和想法,包括产品落地服务、多 Agent 处理任务流、宠物与 AI 结合、AI 绘画精灵等方向。
2025-04-09
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08