Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想学习通过衣服图片生成模特视频

Answer

以下是关于通过衣服图片生成模特视频的相关内容:

如果您要通过衣服图片生成模特视频,有以下两种方法可供参考:

方法一:使用 Stable Diffusion

  1. 真人穿衣服拍照,并拿到穿衣服的真实质感照片。如果身材方面有难处,可以借助美图秀秀或 PS 进行处理。
  2. 选好底模,一定要是 realistic 的真人照片风格底模,例如 majicmixRealistic_v7。
  3. 根据不同平台换头,比如面向海外市场换白女头,面向中老妇女换妈妈头。
  4. 在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置好 prompts 和 parameters,例如 breathtaking cinematic photo, masterpiece, best quality, (photorealistic:1.33), blonde hair, silver necklace, carrying a white bag, standing, full body, detailed face, big eyes, detailed hands 等。

方法二:使用即梦的智能参考功能

  1. 打开即梦官网 https://jimeng.jianying.com/ 。
  2. 选择图片生成。
  3. 选择导入参考图(上传一张参考图,点击智能参考)。
    • 模特图自由定制:智能参考可以让模特图的变装、换发型、换脸、换发色和调整人物姿势变得轻而易举。
    • 产品图随心变化:可以改变产品材质,调整画面背景。
    • 电商海报一键搞定:支持随意更改背景、元素,适应不同的营销主题。

希望以上内容对您有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

我用Stable Diffusion做电商!

如果你要开淘宝网店,那么在淘宝网页上展示的商品就要漂亮精致,紧紧抓住消费者的心♥!我们可以借助AI作图工具,简单地代替请模特特地搞拍摄的过程啦!这里介绍很简单的利用AI绘画局部逐渐美化女装商品展示图的方法。我是运营网店的女装店主,我没有钱请模特了。。。我可以用stable diffusion来初步制作自己的展示商品!比如我这里要卖这个绿色的淑女裙。(左图)我尝试了直接拿真人穿的衣服抠出来生成,效果很不好。(右图)借鉴了一些视频和方法,我总结了一些我觉得实用性较高,也比较简单的步骤。我觉得局部重绘是比较合适和真实的方法。真人穿衣服拍照。拿到穿衣服的比较真实质感的照片。【如果是身材方面有点难处那就借助美图秀秀or ps吧】ok,比如我(不具有做模特资质的小美女)穿好了我卖的漂亮衣服摆好pose摆几张啦!选好底模!一定要是realistic的,真人照片风格的底模。我这里选的是很经典的majicmixRealistic_v7。换头,根据不同平台换头!比如面向海外市场的,就得换白女头吧。面向中老妇女的,换妈妈头。ok,我这里换白女头,比如我要放在亚马逊上卖。操作就是图生图下的局部重绘选项卡下涂抹自己替换的部分。prompts&parametersbreathtaking cinematic photo,masterpiece,best quality,(photorealistic:1.33),blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands,

智能参考功能实测

即梦重磅推出的新功能——智能参考,可以说这个功能使用起来比MJ这次新编辑器更让我惊艳,只需上传一张参考图,就能快速实现多种商业创意的设计。[heading4]基础操作[content]1打开即梦官网https://jimeng.jianying.com/2选择图片生成3选择导入参考图(上传一张参考图,点击智能参考)[heading3]几个案例[content]1.模特图自由定制智能参考让模特图的变装、换发型、换脸、换发色和调整人物姿势变得轻而易举!原图提示词模特衣服换成婚纱提示词图片背景换成橙色提示词模特衣服换成红色提示词画面背景夏日风,有卡通水果元素2.产品图随心变化产品图的可塑性进一步提升!使用智能参考,你可以改变产品材质,随心所欲地调整画面背景。原图(示例1)提示词沙发换成布材质提示词沙发换成毛绒材质提示词图片中有个女子坐在沙发上3.电商海报一键搞定还在为活动海报设计发愁?智能参考功能支持随意更改背景、元素,适应不同的营销主题。原图提示词把图片背景改成居家风格原文链接https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA

Others are asking
我想找一个可以把服装图片用ai的方式直接‘穿’在另一张图片的模特身上
以下是两种可以将服装图片用 AI 的方式“穿”在另一张图片的模特身上的方法: 方法一:使用 ComfyUI GeminiAPI 1. 在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,网址为:https://aistudio.google.com/apikey?hl=zhcn 。 2. 安装相关依赖,根据使用的情况选择手动安装(如果使用 ComfyUI 便携版或自己的 Python 环境)或通过 ComfyUI Manager 安装。 手动安装:安装相关依赖。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,在 Manager 中搜索“Gemini API”,然后点击安装按钮。 方法二:使用【SD】 1. 进行 SAM 模型分割:来到图生图中,提示词输入“蓝色毛衣”,蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度为 1。 2. 处理可能出现的问题:如蒙版区域较大导致的衔接问题,可以通过降低重绘幅度或添加一个 openpose 来控制人物的身体,得到正确的姿势。 3. 选择合适的重绘功能:除了使用图生图的局部重绘,还可以使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,具体效果可自行试验选择。
2025-04-09
我有项链白底图,想把他戴在模特上,应该怎么做
要将项链白底图戴在模特上,您可以考虑使用图像编辑软件,如 Adobe Photoshop 或类似的工具。以下是一种可能的操作步骤: 1. 打开图像编辑软件,导入模特图片和项链白底图。 2. 选择项链白底图,使用抠图工具(如魔术棒、套索工具等)将项链从背景中抠出来。 3. 将抠出的项链图层复制或拖曳到模特图片上。 4. 调整项链的大小、位置和角度,使其与模特的姿势和比例相匹配。 5. 可能需要对项链的光影、色调等进行调整,使其与模特图片的整体效果融合。 另外,如果您使用 AI 工具,如 Stable Diffusion 等,以下是一些相关的提示词和参数设置示例: 提示词:breathtaking cinematic photo, masterpiece, best quality, , blonde hair, silver necklace, carrying a white bag, standing, full body, detailed face, big eyes, detailed hands, bracelet 参数设置:Steps:20, Sampler:DPM++2M Karras, CFG scale:7, Seed:3748048683, Size:362x486, Model hash:7c819b6d13, Model:majicmixRealistic_v7, VAE hash:c6a580b13a, VAE:vaeftmse840000emapruned.safetensors, Denoising strength:0.75, Clip skip:2, Mask blur:2, ControlNet 0:"Module:none,Model:control_v11p_sd15_openpose,Weight:1,Resize Mode:Crop and Resize,Low Vram:False,Processor Res:512,Guidance Start:0,Guidance End:1,Pixel Perfect:True,Control Mode:My prompt is more important" 但请注意,使用 AI 工具生成的效果可能需要多次尝试和调整才能达到理想状态。
2025-03-13
请生成一段提示词,用于模特佩戴翡翠珠宝饰品的效果图
以下是一段用于模特佩戴翡翠珠宝饰品的效果图的提示词: breathtaking cinematic photo, masterpiece, best quality, , blonde hair, carrying a light green bag, standing, full body, detailed face, big eyes, detailed hands, wearing a jade jewelry set, fashion photography, studio light,.35mm photograph, film, bokeh, professional, 4k, highly detailed. awardwinning, professional, highly detailed. Negative prompt: ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
2025-03-13
comfyui flux 模特换衣服 的新手 教程
以下是关于 ComfyUI Flux 模特换衣服的新手教程: 工作流整体思路: 1. 生成适合服装的模特: 可以抽卡,抽到满意的模特。加入 Redux 模型,强度不用太高,让提示词生效,Reduxprompt 节点风格细节等级需注意(1=27×27 最强,14=1×1 最弱)。 2. 进行高精度的换装: 先进行预处理的工作,拼出来 mask。 重绘 mask 区域。 工作流解释: 1. 模特生成: 先生成与衣服匹配的模特,先不关注衣服的相似度,抽出满意的模特。 2. 服装高精度处理: mask 的处理:做两个工作,将模特身上的衣服分割出来,拼接出来对应模特与衣服合并后图片的遮罩。 提示词格式与 Redux 权重:使用 Flux 的 fill 模型,提示词书写格式为这是一组图片,左边是衣服,右边的模特穿着左边的衣服。Redux 这里,把权重的调整为最大。 【SD】商业换装教程: 1. 在扩展面板中使用网址安装 Segment Anything,guthub 地址:https://github.com/continuerevolution/sdwebuisegmentanything 。重启之后安装 SAM 模型。 2. 在 github 上有三个 SAM 模型,由大到小分别是 vit_h,可根据情况选择,大部分选 vit_l 。将下载好的 SAM 模型放在指定路径。 3. 测试 SAM 模型效果,左键点击要保留的部分打上黑点,右键点击不要的部分打上红点,双击不需要的点可移除。 4. 预览分离结果,选择合适的蒙版进行服装替换等操作。 点开“展开蒙版设置”,设定蒙版扩展量,建议 30,然后点击发送到“重绘蒙版”。 5. 换衣步骤:在图生图中,提示词输入“蓝色毛衣”,蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度为 1。 6. 若出现衔接问题,可通过降低重绘幅度或添加 openpose 控制人物身体姿势。还可使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,自行试验选择效果好的。
2025-03-04
ai模特换服装生成视频
以下是为您提供的关于 AI 模特换服装生成视频的相关信息: 阿里巴巴开发了 ViViD 视频虚拟试穿技术,可以替换视频中人物的衣服,生成真实自然的视频,支持多种服装类型,在视觉质量、时间一致性和细节保留方面表现优异。相关链接:https://x.com/imxiaohu/status/1796019244678906340 。 此外,目前在电商平台上已经有很多商品图片,特别是衣服的效果图是由 AI 生成的,AI 模特不需要像人一样辛苦换衣服和摆 Pose 。
2025-02-21
AI模特换装
以下是关于 AI 模特换装的相关信息: 字节发布的新模型 SeedEdit 可对图片进行编辑,包括模特服装颜色的更换。例如输入“Change the blue Nike tracksuit to black Nike tracksuit”,SeedEdit 能迅速响应并完成换装。 在达摩院中可以直接进行 AI 模特虚拟换装的测试,网址为:https://damovision.com/?spm=5176.29779342.d_appmarket.6.62e929a4w3xGCR ,其支持虚拟换装和姿态编辑。 AI 模特换装的应用广泛,在电商平台上,很多衣服的效果图已由 AI 生成,AI 模特无需像真人一样辛苦换装和摆姿势。
2025-02-21
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14
可以增强图片清晰的的ai
以下是一些可以增强图片清晰度的 AI 工具: 1. Magnific:https://magnific.ai/ 2. ClipDrop:https://clipdrop.co/imageupscaler 3. Image Upscaler:https://imageupscaler.com/ 4. Krea:https://www.krea.ai/ 更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17 此外,PMRF 也是一种全新的图像修复算法,它具有以下特点: 擅长处理去噪、超分辨率、着色、盲图像恢复等任务,生成自然逼真的图像。 不仅提高图片清晰度,还确保图片看起来像真实世界中的图像。 能够应对复杂图像退化问题,修复细节丰富的面部图像或多重损坏的图片,效果优质。 详细介绍: 在线体验: 项目地址: 这些 AI 画质增强工具都具有不同的特点和功能,可以根据您的具体需求选择合适的工具进行使用。
2025-04-18
图片提取文字
以下是关于图片提取文字的相关信息: 大模型招投标文件关键数据提取方案:输入模块设计用于处理各种格式的文档输入,包括 PDF、Word、Excel、网页等,转换成可解析的结构化文本。多种文件格式支持,对于图片,可以借助 OCR 工具进行文本提取,如开放平台工具:。网页可以使用网页爬虫工具抓取网页中的文本和表格数据。 谷歌 Gemini 多模态提示词培训课:多模态技术可以从图像中提取文本,使从表情包或文档扫描中提取文本成为可能。还能理解图像或视频中发生的事情,识别物体、场景,甚至情绪。 0 基础手搓 AI 拍立得:实现工作流包括上传输入图片、理解图片信息并提取图片中的文本内容信息、场景提示词优化/图像风格化处理、返回文本/图像结果。零代码版本选择 Coze 平台,主要步骤包括上传图片将本地图片转换为在线 OSS 存储的 URL 以便调用,以及插件封装将图片理解大模型和图片 OCR 封装为工作流插件。
2025-04-15
图片变清晰
以下是关于图片变清晰的相关内容: 使用清影大模型: 输入一张图片和相应提示词,清影大模型可将图片转变为视频画面,也可只输入图片让模型自行发挥想象生成有故事的视频。 选用尽可能清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。如果原图不够清晰,可采用分辨率提升工具将其变清晰。 提示词要简单清晰,可选择不写 prompt 让模型自行操控图片动起来,也可明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词。 常见的 AI 画质增强工具: Magnific:https://magnific.ai/ ClipDrop:https://clipdrop.co/imageupscaler Image Upscaler:https://imageupscaler.com/ Krea:https://www.krea.ai/ 更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 用 AI 给老照片上色并变清晰: 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。然后将图片发送到图生图中,打开 stableSR 脚本,放大两倍。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免对原图产生干扰。
2025-04-14
怎么让图片动起来
要让图片动起来,可以参考以下几种方法: 1. 使用即梦进行图生视频:只需上传图片至视频生成模块,提示词简单描绘画面中的动态内容即可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主。生成速度根据视频节奏选择,比如选择慢速。 2. 使用 Camera Motion: 上传图片:点击“Add Image”上传图片。 输入提示词:在“Prompt”中输入提示词。 设置运镜方向:选择想要的运镜方向,输入运镜值。 设置运动幅度:运动幅度和画面主体运动幅度有关,与运镜大小无关,可以设置成想要的任意值。 其它:选择好种子(seed),是否高清(HD Quality),是否去除水印(Remove Watermark)。 生成视频:点击“create”,生成视频。 3. 对于复杂的图片,比如多人多活动的图: 图片分模块:把长图分多个模块。 抠出背景图:智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。 绿幕处理前景图:将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 前景图动态生成视频:用 AI 视频生成工具写入提示词让图片动起来,比如即梦、海螺、混元等。不停尝试抽卡。 生成视频去掉背景:用剪映把抽卡合格的视频放在去掉内容的背景图片,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。
2025-04-12
图片文字转文档
图片文字转文档可以通过以下方式实现: coze 插件中的 OCR 插件: 插件名称:OCR 插件分类:实用工具 API 参数:Image2text,图片的 url 地址必填 用途:包括文档数字化、数据录入、图像检索、自动翻译、文字提取、自动化流程、历史文献数字化等。例如将纸质文档转换为可编辑的电子文档,自动识别表单、票据等中的信息,通过识别图像中的文字进行搜索和分类,识别文字后进行翻译,从图像中提取有用的文字信息,集成到其他系统中实现自动化处理,保护和传承文化遗产。 插件的使用技巧:暂未提及。 调用指令:暂未提及。 PailidoAI 拍立得(开源代码): 逻辑:用户上传图片后,大模型根据所选场景生成相关的文字描述或解说文本。 核心:包括图片内容识别,大模型需要准确识别图片中的物体、场景、文字等信息;高质量文本生成,根据图片生成的文字不仅需要准确,还需符合专业领域的要求,保证文字的逻辑性、清晰性与可读性。 场景应用: 产品文档生成(电商/零售):企业可以利用该功能将商品的图片(如电器、服饰、化妆品等)上传到系统后,自动生成商品的详细描述、规格和卖点总结,提高电商平台和零售商的商品上架效率,减少人工编写文案的工作量。 社交媒体内容生成(品牌营销):企业可使用图片转文本功能,帮助生成社交媒体平台的营销文案。通过上传产品展示图片或品牌活动图片,模型可自动生成具有吸引力的宣传文案,直接用于社交媒体发布,提高营销效率。 法律文件自动生成(法律行业):法律行业可以使用图片转文本技术,自动提取合同、证据材料等图片中的文本信息,生成法律文件摘要,辅助律师快速进行案件分析。
2025-04-11
如何去除图片中的文字内容
以下是去除图片中文字内容的方法: 1. 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除图像中的噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升图像的清晰度和对比度。 2. 图像分割:使用图像分割算法将图片中的文字和背景分离。常用的分割算法包括阈值分割、边缘检测和基于区域的分割方法。 3. 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别出文字区域。 4. 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用的文字识别技术包括基于深度学习的端到端文本识别模型和传统的 OCR(Optical Character Recognition)技术。 5. 后处理:根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选):如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的文字特征来自动去除图片上的文字。 7. 优化算法:对整个处理流程进行优化,提高处理速度和准确度。可以采用并行计算、硬件加速等方法提升算法的效率。 8. 移动端集成:将设计好的算法和模型集成到移动应用程序中,以实现去除图片文字的功能。可以使用移动端开发框架(如 iOS 的 Core ML、Android 的 TensorFlow Lite)来实现模型的部署和调用。 此外,像 Gemini 2.0 Flash 等工具也可以通过自然语言指令来去除图片中的文字,指令如“去掉 XXX”。DALL·E 也能实现去掉图片中的错误文字等操作。
2025-04-11