Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai的研究是否可以分为神经网络与知识图谱两个大的分类?

Answer

AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。

在常见的分类中:

  • 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。
  • 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。
  • 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。
  • 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。

此外,从技术和应用的角度来看:

  • 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。
  • 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。

对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。

Content generated by AI large model, please carefully verify (powered by aily)

References

观点:LLM落地思考

1、NLG:这里我们可以先分析NLG,因为传统方案的NLG基本是落地难落地少,而LLM最大的特点就是生成内容非常的牛,因此NLG可以当做一个全新的场景进行讨论,这也是当前很多偏ToC的业务探索方向,探索生成内容可以怎样创建新的场景。生成内容又可以分为:根据任务要求生成标准结果、根据信息进行内容创作两类,其中前者偏向B端,对指令遵循、准确性、输出可控等有较高的要求;后者偏向C端,在内容的趣味性、探索性、建议性、想象性上有一定的需求。而且,现在AI可以24小时不间断生成内容,理论上来说内容的供给变得无限大了,内容供给无限大后是否会出现质变的场景呢?2、NLP:NLP能做的事情都比较标准化了,也有相当多的落地技术案例,比如客服、评论分析、信息抽取等等,而LLM的出现,很明显可以在这些场景上有更进一步的效果和效率的提升,甚至可以算是对原有的Bert方案的降维打击。也因此这个领域很多成熟企业现在都不太好过(很多原有的Bert方案的流程全部不需要了,在这个领域长期的经验积累被清空),后面会以智能客服为例分析。3、知识图谱KG:这个领域本身其实分为了多个技术路径,有NLP作为图谱前期构建的技术,有图数据库作为承载和查询的底座,也有图计算作为图谱应用推理的技术方案。并且知识图谱更像是符号派的分支,与LLM这个连接派的终极产物其实不那么搭。目前看来LLM在知识图谱的前期构建上(比如实体识别、三元组抽取)是可以有较好的效率提升的。但进一步想,知识图谱与LLM很可能是互补关系,毕竟LLM的参数难以理解,但知识图谱这种结构化的展示确实很好理解的,因此可以想象,今后的业务中使用知识图谱织成一张网来包裹住LLM,来让其输出的更加可控是很有可能的,并且图上的关联关系可以很好的为LLM做信息补足。

学习笔记:AI for everyone吴恩达

非监督学习:非监督学习最著名的就是聚类。非监督学习并不需要准确告诉AI系统需要输出什么。只是需要给出大量数据,然后让AI从中找出有趣的信息。迁移学习:任务A中学习的内容,可以用于帮助完成任务B。许多计算机视觉实际是使用了迁移学习。强化学习:当输出好时强化。输出差时惩罚。使用“奖励信号”来告诉AI什么时候做的好或差,AI会自动学习最大化奖励。做得好时,给一个正数权重,做得差时,给一个负数权重。缺点是需要大量的数据。生成对抗网络:生成对抗网络是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器负责生成虚拟数据,判别器则负责判断这些数据是真实数据还是虚拟数据。两个网络不断反复训练和竞争,从而不断提高生成器生成真实数据的能力,直到生成的数据与真实数据无法区分。GAN可以用于图像、声音、文本等各种类型的数据生成和合成,被广泛应用于计算机视觉、自然语言处理等领域。知识图谱:在搜索时,展示知识图谱。这些信息是从知识图谱中产生的,意味着列出这些人和与其相关的关键信息,如生日,年纪等。酒店知识图谱可能包含大量信息,让人们在查地图时,可以快速找到准确信息。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
卷积神经网络
卷积神经网络,也称卷积网络(术语“神经”具有误导性),使用卷积层来过滤输入以获取有用信息。卷积层具有学习的参数,能自动调整滤波器以提取对应任务的最有用信息,例如在一般目标识别中过滤对象形状信息,在鸟类识别中提取颜色信息。通常多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 最近的卷积网络使用初始模块,它使用 1×1 卷积核来进一步减少内存消耗,同时加快计算速度。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它在前馈网中使用反向传播,被用于读取北美地区约 10%的支票。卷积神经网络可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 在 ImageNet 2012 年的 ILSVRC 竞赛中,来自多个机构的先进计算机视觉小组将已有的最好计算机视觉方法应用于包含约 120 万张高分辨率训练图像的数据集。
2025-03-02
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
学习大模型请给我一张知识图谱
以下是为您提供的大模型知识图谱: 1. 非技术背景,一文读懂大模型 整体架构 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等。 数据层:企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 模型层:LLm 或多模态模型,LLm 即大语言模型,如 GPT,一般使用 transformer 算法实现;多模态模型包括文生图、图生图等,训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。 平台层:模型与应用间的平台部分,如大模型的评测体系,或者 langchain 平台等。 表现层:也就是应用层,用户实际看到的地方。 2. AI Agent 系列:Brain 模块探究 知识 内置知识 常识知识:包括日常生活中广泛认可的事实和逻辑规则,帮助智能体具备泛化能力。 专业知识:涉及深入特定领域的详细信息,如医学、法律、科技、艺术等领域的专有概念和操作方法。 语言知识:包括语法规则、句型结构、语境含义以及文化背景等,还涉及非文字部分如语调、停顿和强调等。 3. 大模型入门指南 通俗定义:输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 类比学习过程 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:用算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 Token:被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时,会对其进行数字化,形成词汇表。
2025-04-07
RAG和知识图谱的结合,需要如何实现
要实现 RAG 和知识图谱的结合,可以参考以下步骤: 1. 数据加载:根据数据源的类型选择合适的数据加载器,如对于网页数据源,可使用 WebBaseLoader 利用 urllib 和 BeautifulSoup 加载和解析网页,获取文档对象。 2. 文本分割:依据文本特点选用合适的文本分割器,将文档对象分割成较小的文档对象。例如,对于博客文章,可使用 RecursiveCharacterTextSplitter 递归地用常见分隔符分割文本,直至每个文档对象大小符合要求。 3. 嵌入与存储:根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,将文档对象转换为嵌入并存储。比如,可使用 OpenAI 的嵌入模型和 Chroma 的向量存储器,即 OpenAIEmbeddings 和 ChromaVectorStore。 4. 创建检索器:使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据模型性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,即 OpenAIChatModel,根据用户输入和检索到的文档对象生成输出消息。 此外,通用语言模型通过微调能完成常见任务,而对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 研究人员引入的 RAG 方法把信息检索组件和文本生成模型结合,能接受输入并检索相关文档,组合上下文和原始提示词送给文本生成器得到输出,适应事实变化,无需重新训练模型就能获取最新信息并产生可靠输出。Lewis 等人(2021)提出通用的 RAG 微调方法,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
2025-03-28
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱产品
知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。 知识图谱于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 知识图谱的关键技术包括: 1. 知识抽取:通过自动化的技术抽取出可用的知识单元,包括实体抽取(命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体)、关系抽取(从数据源中提取实体之间的关联关系,形成网状的知识结构)、属性抽取(从数据源中采集特定实体的属性信息)。 2. 知识表示:属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库。包括实体对齐(消除异构数据中的实体冲突、指向不明等不一致性问题)、知识加工(对知识统一管理,形成大规模的知识体系)、本体构建(以形式化方式明确定义概念之间的联系)、质量评估(计算知识的置信度,提高知识的质量)、知识更新(不断迭代更新,扩展现有知识,增加新的知识)。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。
2025-03-21
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
目前模型之间是如何分类的
目前模型的分类方式多种多样,以下为您介绍几种常见的分类角度: 1. 从来源角度:根据模型的出处,可分为来自行业(如 Google、Meta、OpenAI 等公司)、学术界(如清华大学、麻省理工学院、牛津大学等)、政府(如英国的艾伦·图灵研究所、阿布扎比的技术创新研究所等)以及研究团体(如艾伦研究所、弗劳恩霍夫研究所等非营利性 AI 研究组织)。在 2014 年之前,学术界在发布机器学习模型方面领先,此后行业占据主导。 2. 从整体架构角度: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集,而非用于基层模型训练的数据基集。 模型层:分为 LLm(如 GPT 等大语言模型,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 表现层:即应用层,是用户实际看到的部分。 此外,像 OpenAI o3mini 模型,在 OpenAI 的准备框架中被分类为中等风险,并采取了相应的保障和安全缓解措施。
2025-04-13
基于技术类别的不同,将现在的AI产品进行分类
目前,AI 产品基于技术类别可以进行如下分类: 1. 从生成方式分类: 文生视频、图生视频:如 Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation 等。 视频生视频: 逐帧生成:如 SD+Mov2Mov。 关键帧+补帧:如 SD+Ebsynth、Rerender A Video。 动态捕捉:如 Deep motion、Move AI、Wonder Dynamics。 视频修复:如 Topaz Video AI。 AI Avatar+语音生成:如 Synthesia、HeyGen AI、DID。 长视频生短视频:如 Opus Clip。 脚本生成+视频匹配:如 Invideo AI。 剧情生成:如 Showrunner AI。 2. 从产品阶段和可用维度分类: 以 AI 为底层设计逻辑的 AI 原生类产品。 在原有互联网产品上深度嵌入 AI 功能的 AI+X 产品,目前整体数据表现显著优于 AI 原生类产品,在办公软件和内容平台重点布局。办公软件方面,如百度文库和 WPS AI 等在续写、改写、命题写作等不同程度的 AI 写作功能,以及针对论文、小说等不同题材的 AI 总结功能上表现突出。内容平台方面,AIGC 大多从基于平台内容的 AI 搜索、用于带动 UGC 的 AI 生成功能及模板、降低门槛的内容创作工具三个方向发力。 基于外接 API 微创新的套壳类产品。 将多个产品/模型 API 集中拼凑的集合站类产品。 此外,从 AI 产品经理的角度,个人划分仅供娱乐和参考: 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级:有成功落地应用的案例,产生商业化价值。对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。
2025-04-01
请基于应用场景,对AI模型进行分类
以下是对 AI 模型基于应用场景的分类: 1. 文本生成和内容创作:包括撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:如代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如根据文本描述生成相应的图像,甚至未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议。 此外,在开源模型方面,如 Civitai、海艺 AI、liblib 等为主流创作社区,提供了让用户利用 AI 技术进行图像创作和分享的平台。AI 视频方面,其应用场景广泛,涵盖内容创建、社交媒体营销、讲故事与动画制作、个性化内容、视频摘要、电子学习和培训、新闻媒体、电子游戏开发、虚拟助理和聊天机器人、归档与文档保存以及提高内容的可访问性等多个领域。从使用场景来看,分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-04-01
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
AI分类
AI 主要有以下分类: 1. 生成式 AI: 生产力方面:包括文档、PPT、会议、脑爆、数据处理、搜索、浏览、email、文件等。 社交方面:包括真实和虚拟社交。 教育方面:涵盖早教、语言学习、公司教育、父母教育、学生工具、学校工具等。 创意内容方面:包含视频、音乐、声音、个人图像、图像等。 2. 以生成方式划分: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频。主流生成模型为扩散模型,可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,模型可由 Transformers 提供。 音频生成:用于生成音乐、语音或其他声音,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可以生成非常逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。 3. 在 AI 创客松中,参与同学的分类: 秦超:AI 2C 项目负责人,擅长产品落地服务,具有产品、技术架构和项目管理经验。 kaikai:技术实践者,擅长多 Agent 处理任务流,具备技术实践和团队合作能力。 Cici?:AI 算法开发,想法是宠物与 AI 结合,具有 AI 产品研发和创业经验。 BIN 陈裕彬:CTO,方向是 AI 绘画精灵、AI 推文小说视频生成器,是爆款 AI 小程序作者。 11 鸭鸭呀:产品经理,专注智能写作产品,擅长 Prompt 撰写和 AI 应用。 zz:AI 产品经理,方向是效率工具和游戏,具有大厂经验。 天天向上:AIGC 爱好者,方向是 AI 配音应用,是配音演员,有 AI 预告片制作经验。 烦烦烦??:产品经理,方向是企业服务 AI 应用,具备 PRD 输出和前端开发能力。 周文斌:产品业务负责人,方向是 AI 创业,具有产品规划和研发经验。 Wilson·W:咨询顾问/服务设计师,方向是 AI 组团协作场景,是 GPT4.0 用户,有咨询行业经验。 王蒙:程序员,从事 AI 相关开发,具有后端开发经验。 Nero:产品体验设计师,方向是 AI 绘画、AI 视频,研究 AIGC 方向。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26