Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Build On Trae

Answer

以下是关于 Build On Trae 的相关内容:

在 17 号 Waytoagi 举办的“AI 编程从入门到精通 - Build on Trae”共学中,跟随大雨在 Trae 里输入“用 Matter.js 做一个有意思的画面”,屏幕上呈现出有趣的交互体验,色块如雪花般生成并降落,具备重力、碰撞、弹性效果。有人瞬间想到将此效果融入消消乐游戏,很快初步的消消乐效果诞生。为让游戏更具挑战性和趣味性,开始加关卡,但关卡逻辑未实现,随后向 Trae 反馈并提出把彩色色块换成 emoji 的新想法,Trae 修改后效果活泼生动。之后又提出在消除 emoji 时添加音效,因音效库不够用,灵机一动播放 emoji 对应的英文单词音效。体验地址:https://pipipeter.github.io/xiaoxiaole/

Trae 的使用步骤:

  1. 在电脑上新建一个文件夹,可自行取名,如“helloworld”。
  2. 使用 Trae 打开这个新建的文件夹,打开后左上角能看到选中的文件夹名称。然后点击右上角的“Builder”按钮,切换到 Builder 模式。
  3. 在对话框输入需求,如输入用 p5.js 画分形树的提示词,点击发送按钮,AI 开始工作。还可以在此基础上继续强化,也可以在 https://openprocessing.org/ 查看各种创意,复制代码放到 Trae 里用 AI 对话优化。
Content generated by AI large model, please carefully verify (powered by aily)

References

在Trae中的一次无心对话,竟然做出了消消乐游戏

在17号Waytoagi举办的“AI编程从入门到精通-Build on Trae”共学中,跟随大雨在Trae里输入“用Matter.js做一个有意思的画面”,如下图:神奇的事情发生了,屏幕上立刻呈现出一种有意思的交互体验:点击空白处,色块如雪花般生成并降落,重力、碰撞、弹性效果一应俱全,交互体验新奇有趣。我瞬间被这个效果吸引,脑海中闪过一个念头:要是能把这效果融入消消乐游戏,岂不是别有一番风味?说干就干,如下图:很快,初步的消消乐效果诞生了。看着屏幕上那些色块按照物理规律移动、碰撞、消除,感觉还是很有意思的。为了能让游戏更具挑战性和趣味性,就开始加关卡:向Trae提出增加关卡功能的想法,更新代码后,我满怀期待地测试,却发现关卡逻辑并未实现。然后并向Trae反馈。同时,提出一个新想法,把彩色色块换成emoji,说不定能带来更有趣的视觉效果。Trae按照建议进行修改后,emoji的加入让游戏画面瞬间变得活泼生动,效果如下:我迫不及待地想要进一步完善游戏。于是提出在消除emoji时添加音效,让游戏体验更丰富。然而,随着游戏中的动物emoji越来越多,发现音效库不够用了。这可怎么办?灵机一动,干脆播放emoji对应的英文单词音效,这样一来,玩游戏的同时,还能顺便听听英语,一举两得。哈哈~?体验地址:https://pipipeter.github.io/xiaoxiaole/

AI编程与炼金术:Build on Trae

因为AI生成的代码,需要有地方存起来,所以请你先找一个地方,新建一个文件夹,文件夹的名字可以自己取,比如叫“helloworld”[heading3]第二步:使用Trae打开这个文件夹[content]点击后,在弹出的弹层里选中前面你新建的文件夹:打开后,会是下图的状态:左上角能看到选中的文件夹是“helloworld”。下一步是点击右上角的“Builder”按钮,切换到Builder模式,切换后是这样的:

AI编程与炼金术:Build on Trae

解释:p5.js是一个专门用来创建图形和交互式体验的代码库,分形树是一种数学上的概念,可以生成很美的图形,常见的有雪花等。这里我们尝试用代码来画出一些美丽的图形。把这个提示词,复制粘贴到对话框内,点击右下角发送按钮,就可以看到AI开始工作了:看视频:[分形树_mPPcRmTvYGH.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/TjFwb1nBoorRUfxabGbcv1U8nWb?allow_redirect=1)怎么样,是不是够简单?你还可以在这个基础上继续去强化:完成后可以看到效果变化了:大家可以沿着这个方向继续去挖掘,比如:现在就变成更加绚丽并且有色彩变化的动效了:[分形树_QCjLVDWIkJ5.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/U8iLb6ohJoS9qlxZGM5ceCgQn0d?allow_redirect=1)类似这样的玩法,我们可以打开https://openprocessing.org/在里面查看各种创意,然后复制代码放到Trae里面,就能够用AI对话去优化,我给大家录个屏:[分形树下载代码_a1lSEtehMij.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/OKLjbFKADoxk1IxmnVUcHYynnHd?allow_redirect=1)

Others are asking
请你帮我找到AI编程与炼金术 build on trae的课程文档
以下是关于“AI 编程与炼金术 Build on Trae”的课程文档相关内容: 课程活动:包括制作图片字幕生成器、开发网页金句卡片生成器、制作一档专属自己的 AI 博客、制作中文名字生成器、构建一个优质文章推荐网站、制作表情包生成器、开发 Life Coach 应用、构建浏览器智能插件、开发个人网页/小程序,并进行优化部署等。 知识图谱: 章节: 三.使用 DeepSeek R1 给老外起中文名 八.做一档你自己的 AI 播客 九.柴犬表情包生成器实战(Coze bot+API) 十.做一个微信小程序 一.Trae 的介绍/安装/疑难杂症 二.图片字幕生成器 四.DeepSeek R1 驱动的 Life Coach 五.DeepSeek 驱动的网页金句卡片生成 六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格) 七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下) 知识点: Node.JS 安装 Python 安装 相关链接: 其他各章节对应的具体链接 您可以根据上述内容,通过相应的链接获取更详细的课程文档信息。
2025-03-21
how to build an AI chatbox
以下是关于如何搭建 AI 聊天框的一些指导: 1. 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器。 假设要对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数记得根据要交互的群组进行具体修改),查看无误后点击保存,创建编排模板。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署成功。 2. 利用大型语言模型打造聊天机器人 ChatGPT 是具有交互式聊天界面的 Web 应用,可利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。 设置 OpenAI Python 包,定义两个辅助函数:getCompletion 函数和 generateResponse 函数。通过这两个函数与 AIGPT 模型进行交互并生成对话。 3. Cursor Chat 概述 Cursor Chat 允许在编辑器中使用强大的语言模型在代码库中提问或解决问题。 语言模型要给出好答案需要知道与代码库相关的特定事物即上下文,Cursor 具有多项内置功能提供上下文,如自动包含整个代码库中的上下文、搜索 Web、索引文档和用户指定的代码块引用等。 默认情况下,Cursor Chat 位于 AI 窗格,可通过按 Ctrl/⌘ + L 切换,打开时按 Enter 提交查询。
2024-10-19
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
你知道Pyhton量化交易吗
Python 量化交易方面,以 Claude 3.7 为例,它在面对生成能在聚宽跑的量化交易模型这一自由命题时,给出了两个方案。一个是最简单的双均线策略,类似于红圈(均线金叉)买入,绿圈(均线死叉)卖出,同时辅以其他技术指标和指数强弱做筛选,这是量化入门策略。另一个是量价动量策略,其中包含了量化交易机构常参考的几个因子。在经历三轮报错和反馈后,Claude 很快成功跑出了一份完整的代码,其模型思路有明确的选股池和择时信号。
2025-04-14
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
trae的使用指南
以下是 Trae 的使用指南: 一、Trae 简介 Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,使用自然语言对话就能实现代码编写。 二、Trae 的功能 1. 提供传统的 IDE 功能,包括代码编写、项目管理、插件管理、源代码管理等。 2. 智能问答:在编写代码时,可随时与 AI 助手对话,获得代码解释、注释和错误修复等帮助。 3. 实时代码建议:AI 助手能理解当前代码并在编辑器中实时提供建议,提升编程效率。 4. 代码片段生成:通过自然语言描述需求,生成相应代码片段,甚至能编写项目级或跨文件的代码。 5. 从 0 到 1 开发项目:告诉 AI 助手想开发的程序,它将提供相关代码或自动创建所需文件。 三、下载 Trae 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 四、使用方法 1. 安装:下载完成后按照界面提示一步步安装。 2. 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完可能会出现“App Unavailable”,此时需要开启科学上网。 3. 网页登录成功后可关闭科学上网,再点击中间大按钮,自动进入 Trae 客户端。 五、模式选择 1. Chat 模式:根据描述进行代码生成、解释、分析问题或解决问题。 2. Builder 模式:可让 Trae 帮助从 0 开发一个完整的项目,对代码文件的任何更改都会自动保存。 六、使用案例 1. 生成一个贪吃蛇游戏 打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写,期间需手动接入进行文件审查,点击“全部接受”。 代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到实现的游戏效果,试玩基本无 Bug。 Trae 会进行工作总结,说明已实现的功能,如游戏包含的特性、主要功能和游戏界面等。 2. 生成一个任务清单应用 在输入框中输入:使用 Web 技术开发一个任务清单应用。 3. 根据 UI 设计图自动生成项目代码 从站酷上找一张设计图,输入提示:使用 html 技术实现如图大屏页面。 七、总结 从实际体验来看,Trae 表现可圈可点。 1. 高效代码生成能力:能在几分钟内生成完整框架,代码结构清晰且功能齐全,甚至能自动处理依赖项和运行命令。 2. 多技术栈支持:对 Web 技术掌握远超预期,生成的代码可直接运行且无明显语法错误。 3. 动态调整潜力:能根据用户反馈快速调整样式,自适应布局的实现展现了 AI 的迭代能力。
2025-04-09
trae如何安装
以下是 Trae 的安装步骤: 1. 由于 Trae AI 官网部署在海外,且其本身需要使用海外的大模型,所以需要通过 VPN 等方式科学上网。 2. 在官网(https://www.trae.ai/download)直接点击下载,Trae 会自动识别您的电脑芯片。 3. 下载完成后,如果是 Mac 系统,将左侧的 Trae 应用拖动到右侧的文件夹内;如果是 Windows 系统,双击 Trae 图标,即可完成安装。 4. 安装完成后,点击图标启动,进行以下简单设置: 选择主题背景和默认语言,可选择中文。 对于提供的 Cursor、VS Code 等其他 AI 编程工具的配置和插件迁移,如果是第一次使用类似工具,可直接点“Skip”选项。 对于不理解意思的设置,直接点“Skip”选项。 5. 选择合适的登录方式,登录方式包括 Google 账号登录、Github 账号登录、邮箱登录。如果没有账号,可新注册一个账号。推荐有余力的用户访问 Github 官网(https://github.com/)注册。 注意:Trae 仅在部分地区可用,可能需要开启科学上网。登录完之后,若出现“App Unavailable”提示,可能是所在地区不可用,此时需要开启科学上网。网页登录成功之后可以把科学上网关掉。
2025-04-08
TRAE编程快速入门
以下是 Trae 编程的快速入门指南: 一、Trae 简介 Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,通过自然语言对话就能实现代码编写。 二、Trae 的功能 1. 传统 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等。 2. 智能问答:在编写代码时可随时与 AI 助手对话,获得代码解释、注释和错误修复帮助。 3. 实时代码建议:AI 助手能理解当前代码并实时提供建议,提升编程效率。 4. 代码片段生成:通过自然语言描述需求生成相应代码片段,甚至能编写项目级或跨文件代码。 5. 从 0 到 1 开发项目:告知想开发的程序,AI 助手提供相关代码或自动创建所需文件。 三、下载 Trae 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 四、使用方法 1. 安装:下载完成后按界面提示一步步安装。 2. 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完若出现“App Unavailable”提示,因 Trae 仅在部分地区可用,此时需开启科学上网。网页登录成功后可关闭科学上网,再点击中间大按钮。 3. 进入客户端后,查看对话框右下角,有三种大模型可选:Claude3.5Sonnet、Claude3.7Sonnet、GPT4o。Trae 提供两种模式: Chat 模式:根据描述进行代码生成、解释、分析问题或解决问题。 Builder 模式:可让 Trae 从 0 开发完整项目,对代码文件的任何更改会自动保存。 五、使用案例 1. 生成一个贪吃蛇游戏:打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写,期间需手动接入进行文件审查,点击“全部接受”。代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到实现的游戏效果,试玩基本无 Bug。Trae 还进行了工作总结,说明了已实现的功能,如游戏包含的特性、主要功能和游戏界面等。 2. 生成一个任务清单应用:输入“使用 Web 技术开发一个任务清单应用”,过程类似。 3. 根据 UI 设计图自动生成项目代码:从站酷上找设计图,输入提示生成,虽不完美但能根据反馈调整。 六、总结 从实际体验看,Trae 表现出色,具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-30
这里有trae的教程吗
以下是关于 Trae 的相关信息: 1. Claude 3.5 免费无限量!字节 AI 编程神器 Trae Win+Mac 版全量上线: Trae Windows 版本已于特定时间上线,即日起全系统可用。 Trae 标配 Claude3.5sonnet 模型免费不限量,而竞品工具同一模型每月收费且限量使用。 Trae 编辑器所有功能原生支持中文,上手门槛低。 Trae 是一款与 AI 深度集成,提供智能问答、代码自动补全以及基于 Agent 的 AI 自动编程能力的 IDE 工具。 2. 来了,AI 编程神器 Trae 的保姆级使用指南: 介绍了控制按钮和游戏说明。 展示了生成任务清单应用的过程和效果。 演示了根据 UI 设计图自动生成项目代码的操作及调整效果。 总结了 Trae 的高效代码生成能力、多技术栈支持和动态调整潜力。 3. AI 编程零门槛:Trae 国内版终于来了: 前段时间学习 AI 编程时发现的初学者前置问题,如今随着 Trae 国内版发布得到解决。 Trae 国内版是国内首个 AI IDE,自带特定模型,免费、快速、稳定。 Trae 是字节跳动旗下类似其他 IDE 工具的 AI 原生编程工具,具有国内用户友好、使用完全免费、内置预览插件等特性,适合新手入门也能提升资深程序员编程速度。
2025-03-27
trae国内版
Trae 国内版是国内首个 AI IDE,具有以下特点和优势: 1. 自带豆包 1.5 pro 和满血版 DeepSeek R1、V3 模型,免费、快速、稳定。 2. 解决了初学 AI 编程时的常见前置问题,如官网打不开、会员购买、中文和预览插件安装等,真正实现了 AI 编程零门槛。 3. 网址为 Trae.com.cn,或可点击文末【阅读原文】直接访问。 4. 是字节跳动旗下的 AI 原生编程工具,类似 Cursor、Windsurf 等 IDE 工具,用户可通过自然语言编写出网页、软件。 5. 具有国内用户友好、使用完全免费、内置预览插件等特性。 6. 相比 IDE 插件类的 AI 代码助手,Trae 这样的 AI 原生 IDE 有两个跨越式的突破:补全不限于向后追加,可多行全方位自动补全;具备 Agent 能力,能自动完成代码生成、调试、运行等工作。 7. 国外版与国内版的主要区别在于模型,国内版使用国内模型,连接稳定快速,界面根据国内用户习惯定制。如果想保留原有 IDE 并增加 AI 编程功能,可选择 MarsCode 插件;若想体验全新围绕 AI 设计的原生 IDE,则可选择 Trae。
2025-03-26