Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么用AI生成照片?

Answer

以下是几种用 AI 生成照片的方法:

  1. 使用 Stable Diffusion 模型:它可以根据您输入的文本指令,利用文本中包含的语义信息与图片中包含的像素之间的对应关系生成图片。生成的图片样子完全取决于您输入的提示词,在非排列组合的工作模式下难以出现完全相同的两张输出图片。就像使用画笔,线条、色彩由它提供,而构造出什么样的图画取决于您自己的设计。
  2. 利用即梦生成定制化人物肖像写真:
    • 打开即梦官网链接:https://jimeng.jianying.com/ai-tool/home/?utm_medium=baiduads 。
    • 选择写实肖像。
    • 选择心仪的模板,比如人鱼风,点击“做同款”。
    • 为生成定制肖像,一定要点击“导入参考图”。
    • 点击“人物长相”,注意很多名人的脸无法使用生成。
    • 点立即生成。
    • 查看生成好的照片,若不满意可再点击生成,找出最满意的一张或几张。
    • 生图模型选择最新的 2.0PRO,有照片质感。图片比例可改,有八种比例可选,图片尺寸可自由选择。
  3. 使用 Stable Diffusion 的涂鸦功能:
    • 点击空白的地方上传一张纯白的图片作为画纸。
    • 右边的两个小按钮点开可调节画笔的大小和颜色。
    • 在画纸上随便画画。
    • 挑合适的大模型,想要什么画风就挑什么模型。
    • 输入关键词,先输入关于照片质量的词,再告诉它您画的是什么。
    • 把重绘幅度拉到 0.6 - 0.8,点击生成。
Content generated by AI large model, please carefully verify (powered by aily)

References

全国首例AI生成图片著作权案例解读:探索AI作品知识产权保护之路

1.Stable Diffusion模型可以根据文本指令,利用文本中包含的语义信息与图片中包含的像素之间的对应关系,生产与文本信息匹配的图片,并不是通过搜索引擎调用已有的现成图片,也不是将软件设计者预设的各种要素进行排列组合。说明其生成的图片是什么样子完全取决于使用者输入什么样的提示词,在非排列组合的工作模式下难以出现完全相同的两张输出图片。它就类似于画笔,仅负责提供线条、色彩,而要构造出一幅什么样的图画取决于使用者自己的设计。2.人工智能并不具备自由意志。也就是说,利用人工智能时,其并不具有独自优化的能力,李某根据自己的审美个性,通过增删提示词、修改相关参数,得出了不同的图片,最后选定,完全体现出本质上是李某在利用这个工具创作,在投入自己的智力以及独创思想。就像人们使用照相机拍摄,为了排出漂亮的照片会调节参数、选取角度光线等,体现个人对作品的创作理念。案例中法官承认这样依靠使用者的输出设计生成的图片属于美术作品,具有独创性和智力投入,受到著作权的保护,达到了鼓励创作的目的。在当下技术背景与现实下,给艺术创作提供了有力的支持以及新的创作思路。利用新兴智能工具,把自己的独创性思想转化为现实作品,极大地节省了创作成本。法律适用:《中华人民共和国著作权法》第三条:本法所称的作品,是指文学、艺术和科学领域内具有独创性并能以一定形式表现的智力成果。《中华人民共和国著作权法实施条例》第四条:著作权法和本条例中下列作品的含义:(八)美术作品,是指绘画、书法、雕塑等以线条、色彩或者其他方式构成的有审美意义的平面或者立体的造型艺术作品。(2)AI软件使用者享有生成图片的著作权案例中该人工智能软件生成的图片应由谁来享有该图片的著作权,谁是它法律意义上的作者呢?

Penny:0成本,用1天时间成为AI肖像摊摊主

a.打开即梦官网链接:https://jimeng.jianying.com/ai-tool/home/?utm_medium=baiduadsb.如下图,选择写实肖像。c.选择你心仪的模板,比如下图人鱼风,点击“做同款”。d.为了生成定制肖像,一定要点击“导入参考图”。e,点击“人物长相”。这里随机找了一张希拉里的照片。注意:很多名人的脸是无法使用生成的。比如我用特朗普的脸举例生成就失败了。f,如下图,点立即生成。g,查看生成好的照片。是不是还挺美的??如果对生成照片结果不满意,可以再点击生成一次,如下图。找出最满意的1张或几张[heading2]2,一些参数[content]生图模型选择最新的2.0PRO,最有照片质感。图片比例可改。八种比例可选。图片尺寸可自由选择。[heading2]3,常用写真风格及其提示词[heading2]女人1:氛围感+灯光+皮草写真[content]提示词:氛围感下的人像写实摄影,模糊剪影在磨砂玻璃后,低角度,可爱的中国美女,皮草大衣,发光手写汉字高速动态模糊,画面层次丰富,8K画质,立体,半身像,身材高挑,高冷,大师摄影,虚影

教程:超详细的Stable Diffusion教程

很多人都有乱涂乱画的习惯,但是大家会不会很好奇,我随便画的东西,AI会生成什么呢?看看下面两张图,左边的图就是我在电脑上随便画的(画的很丑)但是在我告诉SD我画的是什么之后,它直接就给我生成出来一张好看的图,这就让我觉得我画画天赋很高了哈哈哈!!这个就是SD图生图里的涂鸦功能,点击空白的地方上传一张纯白的图片,也就是你的画纸右边的两个小按钮点开就可以调节画笔的大小和颜色接着就在画纸上随便画画然后挑合适的大模型,想要什么画风就挑什么模型接着输入关键词一样的,先输入一些关于照片质量的词再告诉SD,你画的是什么比如说我画的就是:河流,森林(river,forest)最后我们把下面的重绘幅度拉到0.6~0.8,点击生成就可以啦!是不是非常简单,自己随便画几笔,就能生成出非常好看的照片了!

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14