Navigate to WaytoAGI Wiki →
Home/All Questions
如何用AI写月报
以下是关于如何用 AI 写月报的指导: 1. 信息收集:利用 AI 搜索与权威网站相结合,获取关键数据。AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对月报需求将内容进行拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写月报初稿,可指定风格并校验数据与结论的准确性。 需要注意的是,AI 仅作辅助,最终内容需人工主导校验,避免出现误导性结论。
2025-03-26
flowith知识库的用法
Flowith 知识库的用法包括以下方面: 1. 拆解创作任务: 将复杂的创作任务拆解到合适的颗粒度,为 AI 提供指导,例如拆解创作“科幻预见未来”的步骤。 明确关键任务节点和围绕其展开的主线任务。 2. 建立定向知识库: 将相关内容导入到 flowith 的知识花园中作为 AI 可调用的知识库,例如将《梦想与颠覆》卡牌的相关内容转化为文字上传。 打开智能拆分模式,让 AI 自动分析和优化拆分逻辑,形成知识“种子”。 激活知识库后,AI 会启用知识关联功能,使输出内容更具针对性。 可以发布或分享自己的知识库,也可在知识市场中使用他人的。 3. 构建知识库: 选择“Manage Your Knowledge Base”进入知识库管理页面。 点击左上角的加号添加新的知识库,并起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 处理文件。 4. 选择知识库提问: 在页面左侧可看到检索资料的来源,并可点击显示按钮展现所有原始信息。 Flowith 可以进行“可视化”的追问,能明确看到问答之间的序列关系。 可以在画布上平行提问,默认延续前面的问题,鼠标点击画布其他部分可新开问题。 不同的提示词面对同样的上下文会有不同结果,详细和强化的提示词能使答案更聚焦、详细。
2025-03-26
Gemini是用什么训练的
Gemini 是在 Google 的 TPU AI 加速器上训练的,似乎没有使用英伟达的 GPU。Google 还推出了全新的 Cloud TPU v5p 和 AI Hypercomputer 超级计算机,将加速 Gemini 的开发,使 AI 模型的训练更快。 Cloud TPU v5p 是目前 Google 最强大、可扩展和灵活的 AI 加速器。它在 TPU v4 的基础上提供了超过 2 倍的 FLOPS(浮点运算次数/秒)和 3 倍的高带宽内存(HBM)。TPU v5p 可以比前一代 TPU v4 更快地训练大型语言模型(LLM),对于嵌入密集型模型,其训练速度比 TPU v42 快 1.9 倍。TPU v5p 的可扩展性是 TPU v4 的 4 倍。 AI Hypercomputer 是一个突破性的超级计算机架构,它采用了集成的系统,包括性能优化的硬件、开放软件、领先的机器学习框架,以及灵活的消费模型。通过系统级协同设计来提高 AI 训练、调优和服务的效率和生产力。具有性能优化的计算、存储和网络硬件,建立在超大规模数据中心基础设施之上,利用高密度占地面积、液体冷却和 Jupiter 数据中心网络技术。通过开放软件使开发者能够调整、管理和动态编排 AI 训练和推理工作负载。提供了一系列灵活和动态的消费选择,包括传统的承诺使用折扣(CUD)、按需定价和现货定价,以及为 AI 工作负载量身定制的消费模型。 Gemini 模型是在一个既包含多模态又包含多语言的数据集上进行训练的。预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。使用 SentencePiece 分词器,发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。对所有数据集进行过滤,使用启发式规则和基于模型的分类器,还进行安全过滤以删除有害内容。从训练语料库中筛选出评估集。在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。
2025-03-26
让老照片动起来
以下是关于让老照片动起来的相关信息: 2024 上海市杨浦区举办了“时光印记”AI 公益挑战赛,采集了 20 位老一辈建设者的老照片与故事,期望用 AIGC 技术创作影视频、AIMV、动图,重现其青春风采与城市贡献。奖项丰富,包括丰厚现金奖励、DOU+流量推广、即梦 AI 积分、歌歌 AI 会员、剪映 App 会员等,还有比赛证书、线下巡展等。报名及创作时间为即日起至 2024 年 11 月 20 日。活动组织包括上海市杨浦区民政局、跳跳糖星火公益社团、WaytoAGI、即梦 A、歌歌 Al 等。作品要求任选百年主题,创作视频短片、音乐 AIMV 或动态老照片,AI 制作内容不低于 70%,视频短片时长 60 秒以上,音乐 AIMV 至少 30 秒,图片组让老照片动起来 5 10s,评选规则为预选加专家评委多维度评选。参赛方式为报名问卷和进群获取素材。 体验让老照片动起来的工具: Dreamina 即梦:网址为 https://dreamina.jianying.com/aitool/home?subTab ,优点是不需要?,每天有免费额度,注册可用抖音号或手机号,注册时间 5min。上传图片后能让老照片有一些动态效果,比如水面动起来,但也可能出现画面扭曲的情况。 Sora:网址为 https://openai.com/sora ,优点是发布的成果好,集成在 openai 一套里可用,但需要?,需要 gmail 注册,需要订阅后才能使用,花费时间 30 60min,价格为 GPT 4 20$一个月。
2025-03-26
零基础学Ai
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一些个人的 AI 学习经历供您参考: 二师兄来自上海,80 后,计算机零基础。2024 年 2 月在七彩虹的售后群接触到 AI 绘画,下载了 SD 秋叶安装包和教学视频,迈出 AI 学习的第一步。3 月啃完 SD 的所有教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,尝试相关项目。5 月因工作变动,在无硬件支持的情况下继续学习,加入 Prompt battle 社群,开始 Midjourney 的学习。 同时,“AI 编程共学”活动也为零基础学习者提供了一些资源和分享: 10 月 28 日 20:00 开始(回放链接: ),分享通往 AGI 之路增量小游戏、转生之我是野菩萨,并进行 0 基础做小游戏分享。 10 月 29 日 20:00 开始(。 10 月 30 日 20:00 开始(回放链接),分享,包括 Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用。 10 月 31 日 20:00 开始(回放链接),进行 0 基础做小游戏分享:猪猪?撞南墙。
2025-03-26
修复旧照片
以下是关于修复旧照片的相关内容: 使用 StableSR 修复旧照片: 1. 需使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 一个 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。 测试结果: 1. 使用“Ultimate SD upscale”脚本放大,重绘幅度开到 0.1 能看到人物细节变化,但整个人磨皮严重,失去真实感;重绘幅度开到 0.4 则变化较大。 2. 用“后期处理”的放大方法,缩放 3 倍,眼神更锐利,但头发仍模糊。 3. 用 StableSR 放大,需将大模型和 VAE 分别调整为下载安装的“Stable Diffusion V2.1 512 EMA”和“VQGAN vae”。 ComfyUI 老照片修复 Flux Controlnet Upscale: 1. 以前的高清放大工作流被用于淘宝老照片修复,现在新模型结合工作流,十几个基础节点就能实现更好效果。 2. 参数调节:先确认放大倍数,再根据图片调整 controlNet 强度。 3. ControlnetUpscaler 放大模型:是 Jasper 研究团队为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,通过特定代码加载管道,加载控制图像并进行图像处理。训练方式采用合成复杂数据退化方案,结合图像噪声、模糊和 JPEG 压缩等多种方式对真实图像进行人工退化。 4. Flux Ultimator 细节增强:能增加小细节,让图像逼真,增强色彩,在 0.1 强度设置下有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 5. T5 Clip:若图片质量细节不够,选择 fp16 版本。 6. 图像传递:controlNet 传递的应是上传的原始图片。 用 AI 给老照片上色: 在新上线的 controlnet 模型中,新增 Recolor 模型可给黑白图片重新上色。可选择 realisian 的写实大模型,提示词直接描述颜色和对应内容,ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果更好。
2025-03-26
agi 是什么意思
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 部分人认为大语言模型(LLM)具有 AGI 潜力,例如 ChatGPT 背后的技术,而 LeCun 反对这一观点。 OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-26
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-26
请问为什么需要机器学习?
机器学习之所以必要,主要是因为对于一些复杂任务,直接编程太过复杂,人类难以解决任务中的所有细节并精确编程。例如,编写程序去识别复杂场景中照明条件下新视角的三维物体很困难,因为我们不了解其在大脑中的运作机制,即便知道,编写的程序也会非常复杂;编写计算信用卡诈骗概率的程序也很困难,因为可能没有简单可靠的规则,需要结合大量弱规则判别,且欺骗行为会转移目标,程序需不断更改。 在这种情况下,我们向机器学习算法提供大量数据,让算法通过探索数据并找到能实现程序员目的的模型来解决问题。机器学习算法利用这些样本生成的程序可能与典型手写程序不同,可能包含数百万个数字。如果做得正确,该程序能像处理训练集样本一样处理新样本,且数据改变时程序也可通过训练新数据改变。 目前,大量的计算比支付给程序员编写特定任务的程序更便宜。机器学习适用的任务例子包括模式识别(如真实场景中的物体、面部识别或表情、口语)、异常识别(如不寻常的信用卡交易序列、核电站传感器读数的异常模式)、预测(如未来股票价格或货币汇率、一个人喜欢的电影)。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26