Navigate to WaytoAGI Wiki →
Home/All Questions
介绍一下什么是stable diffusion
Stable Diffusion 是一种扩散模型的变体,最初称为潜在扩散模型(Latent Diffusion Models)。它是一个 AI 自动生成图片的软件,通过用户输入文字就能生成对应的图片。其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪并在文本引导下进行多轮预测的 UNET 等。 在硬件要求方面,建议使用不少于 16GB 内存,并有 60GB 以上的硬盘空间,需要用到 CUDA 架构,推荐使用 N 卡。目前也有对 A 卡的相关支持,但运算速度明显慢于 N 卡。在训练方面,不同模型有不同的训练要求,例如 SD1.5 训练要求 12G VARM,SDXL 训练要求 16G VARM。此外,还有诸如模型实例、融合模型、微调模型等相关内容。
2025-03-25
ten可以安装在电脑里,然后电脑上可以看视频进行实时翻译吗?这个功能可以怎么去实现?
目前 Ten 不太明确是指何种具体的软件或工具。一般来说,如果您想在电脑上实现观看视频实时翻译的功能,可以考虑使用以下几种常见的方法: 1. 利用浏览器插件:例如谷歌浏览器的某些翻译插件,能够在您观看在线视频时提供翻译服务。 2. 专业的翻译软件:部分专业的翻译软件具备屏幕取词和实时翻译视频的功能。 3. 操作系统自带的功能:某些操作系统可能提供了相关的辅助功能来实现类似的效果。 但需要注意的是,不同的方法可能在翻译的准确性、支持的语言种类以及适用的视频平台等方面存在差异。
2025-03-25
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
使用RAG要注意什么?
使用 RAG 时需要注意以下几点: 1. 不能随意输入任何文档就期望得到准确回答。尽管 RAG 的基本概念不难理解,但有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,这些都需要专业知识和持续优化。 2. RAG 不能完全消除 AI 的幻觉。虽然它可以显著减少幻觉,但模型仍可能在检索到的信息基础上进行不当的推理或生成错误信息,只要有大模型参与,就有可能产生幻觉。 3. RAG 仍然消耗大模型的 Token。从流程上看,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出。 4. 从评估角度看,如果检索到的知识是无效的,会严重影响 LLM 应用的表现,因此将检索过程的精确度和召回率与整个 LLM 应用程序分开进行研究尤为重要。 5. RAG 存在局限性,它适合打造专才,不适合打造通才,能够为模型提供新的信息、专有领域知识等,但并不适合为模型提供通用领域知识。同时,在让模型保持稳定的风格或结构输出、降低 token 消耗等方面存在不足,这两点需要使用微调技术解决。
2025-03-25
当前效果比较好的对口型,换脸,配音AI应用
以下是一些效果较好的对口型、换脸、配音的 AI 应用: Runway:网址为 https://runwayml.com ,有网页和 app 方便使用。工具教程: 即梦:网址为 https://dreamina.jianying.com/ ,是剪映旗下产品,生成 3 秒,动作幅度有很大升级,有最新 S 模型和 P 模型。工具教程: Minimax 海螺 AI:网址为 https://hailuoai.video/ ,非常听话,语义理解能力非常强。视频模型: Kling:网址为 kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:网址为 https://www.vidu.studio/ haiper:网址为 https://app.haiper.ai/ Pika:网址为 https://pika.art/ ,可控性强,可以对嘴型,可配音。工具教程: 智谱清影:网址为 https://chatglm.cn/video ,开源了,可以自己部署 cogvideo。工具教程: PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。工具教程: 通义万相:网址为 https://tongyi.aliyun.com/wanxiang/ ,大幅度运动很强。 luma:网址为 https://lumalabs.ai/ 即梦 AI 对口型的相关教程: 功能介绍:「对口型」是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色) 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成。先对口型,再超分补帧 关于 AI 短片的相关信息: AI 图片与视频生成的新能力与应用: 图片编辑功能:Midjourney 新增本地图片上传编辑入口,可进行局部重绘、扩图和风格转换等操作。 视频生成模型:解梦新出 p 模型和 s 模型,p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 特效玩法:皮卡和 Pixforce 有特效玩法,如人物爆炸、漂浮等,可用于优化视频效果。 视频转会:Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 视频生成中的角色生视频技术: 角色生视频突破关键帧限制:当前视频生成多依赖关键帧,而角色生视频不再是关键帧输入,而是直接传入角色本身,可更灵活生成视频,如让小男孩从左跑到右。 多角色参考生成创意视频:支持上传多张图,最多三张,可将人物、衣服、背景等元素融合生成视频,如小男孩穿裙子在宇宙飞。 角色对口型技术:如吉梦的对口型技术,支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 不同工具的角色生视频效果:对比了吉梦、Runway 等工具的角色生视频效果,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景:可用于规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。 角色生视频的未来发展:未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。
2025-03-25
Trae生成产品UI
以下是关于使用 Trae 生成产品 UI 的相关信息: 1. DeepSeek 驱动的网页金句卡片生成: 先开发基础版本的浏览器插件,包括选择文字、自定义生成图片,图片底部包含文章标题和链接二维码。 使用 AI Rules 的 Chat 模式完善产品需求(PRD),Trae 运行后会创建 readme 文档,可在其中修改,带有章节选择。 使用 Builder 模式开发产品,在 AI Rules 里指定技术方案,在 readme 里指定产品需求,然后让 Trae 自动化开发。开发完成后在 Chrome 浏览器内加载扩展程序进行调试,第一次报错可能是未创建浏览器插件图标,将截图发给 Trae 处理后重新加载。但需注意 Claude 3.5 模型不具备直接生成图片的能力。 2. 保姆级使用指南: 有控制按钮(开始、暂停、重新开始)和游戏说明。 可生成任务清单应用,输入相关需求即可。 能根据 UI 设计图自动生成项目代码,如输入“使用 html 技术实现如图大屏页面”,但生成效果可能不完美,可让 Trae 调整。 总结:Trae 高效代码生成能力强,支持多技术栈,有动态调整潜力。 3. 智能纪要: 基于 Tree 的海关归类项目及商业化探讨,包括固定随机种子、开发记忆大模型、搭建爬虫工作流、实现全参量归类、解决技术问题、项目成果展示和商业化探讨。 利用 AI 实现工作流封装并面向 C 端的项目介绍,包括前端开发尝试和小程序落地实现,后端接入处理时不会接 API 可让 Trae 帮忙。
2025-03-25
用deep seek撰写出小说大纲之后,怎么给提示词让其一章一章生成
以下是关于用 DeepSeek 撰写小说大纲后,如何给提示词让其一章一章生成的相关建议: 1. 模仿小说家写作:在提示词中描述特定小说家的文风特征,如鲁迅的文风特点等。 2. 控制创作字数:使用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 3. 考虑引起共鸣和关注人类共性:用 DeepSeek 写小说要注重这方面,让好文字能引起生理和情绪共鸣。 4. 优化提示词: 模糊指令优化:如将宽泛需求“写小说”修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;将主观表述“写得专业些”修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:首轮生成获取基础内容,然后进行特征强化、风格调整和最终校验等步骤。 5. 结合其他模型:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 需要注意的是,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-03-25
文稿校对
以下是关于文稿校对的相关内容: 在论文写作领域,AI 技术的应用正在迅速发展,提供了从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。以下是一些论文写作中常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 校对文章是确保内容质量的重要环节。虽然 AI 在生成文本方面已经相当精确,但人工校对仍然是不可或缺的。以下是校对过程中需要注意的几个关键点: 1. 内容准确性:核实文章中的信息和数据是否准确无误,引用的来源是否可靠。对于科技资讯类文章,这一点尤为重要,因为错误的信息可能会误导读者。 2. 表达清晰:检查文章是否流畅易读,语言是否清晰。确保专业术语和概念对目标读者群体来说是易于理解的。 3. 逻辑连贯:确保文章的结构合理,论点和论据之间的逻辑关系清晰,避免出现逻辑跳跃或混乱。 4. 客观公正:保持中立的立场,避免偏见和主观臆断。资讯类文章应以事实为基础,提供多角度的视角。 5. 风格一致:确保文章的语气和风格与公众号的整体风格保持一致,这有助于建立品牌形象。 如果在阅读过程中发现任何问题,可以指导 AI 进行相应的修改。这个过程可能需要反复几次,直到文章达到满意的标准。记住,高质量的内容是吸引和保持读者关注的关键。通过细致的校对和不断的优化,您的文章将更加值得信赖,从而在竞争激烈的资讯领域中脱颖而出。 橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品。它集专业知识检索和问答、超长图文理解和生成、深度编辑和整理、跨模态自由创作于一身,旨在满足用户在科研、学术等领域的查阅、创作、编辑等全链路需求。其功能包括新建、文件、历史、社区、橙篇、文件、网址、图片整理、长文写作、资料搜索、亿级专业资料库、全文校正、文本校对纠错、制作图表、数据可视化、论文格式整理、文档总结、查重、生成参考文献、翻译、中英双语互译等。
2025-03-25
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 3. 记忆:包含短期记忆,所有的上下文学习利用模型的短期记忆来学习;长期记忆,为 Agents 提供长时间保留和回忆(无限)信息的能力,通常通过利用外部向量存储和快速检索来实现。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些与智能体 Agent 相关的目录: 1. 2. 3. 4. 5. 6. 2025AGENT 智能体全球创作大赛的常见问题: 1. 如何报名参加比赛?可以通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可完成报名。 2. 参赛是否需要缴纳费用?本次比赛完全免费,不收取任何报名费用。 3. 可以使用哪些技术和工具开发 Agent?可以使用任何 AI 模型、编程语言和开发工具,只要最终作品符合提交要求即可。 4. 如何提交作品?在本网站直接提交,通过该通道上传您的 Agent 作品和相关材料,同时如果采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可以获得额外的会员奖励。 5. 比赛的奖项设置是怎样的?比赛设有金、银、铜奖和多个单项奖,在获奖后,将获得由组委会颁发的奖金和证书,请保证联系方式的准确性,以便组委会联系您。 6. 参赛作品的知识产权归属?参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-03-25
如果调教ai助力成为网文作家?选用市面上哪种ai模型好一些
如果想调教 AI 助力成为网文作家,以下是一些建议和可选用的 AI 模型: 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 分三次询问:第一次从写作角度分析;第二次从读者角度分析;第三次指出文章的缺点、不足及改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述”的提示词。 分享一个根据文章内容对作者心理侧写的提示词:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 在模型选择方面: 目前只推荐 Claude 3.7 Sonnet,Anthropic 对 Claude 在编程和美学方面有深度优化,效果较好。但您也可以使用 DeepSeek 等模型进行尝试。 对于模型的选用,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。一般可选择豆包·function call 32k,“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-25