Navigate to WaytoAGI Wiki →
Home/All Questions
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图,提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-03-26
给我找一些介绍ai发展历史的文章。
以下是为您找到的关于 AI 发展历史的相关内容: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,自此开始,一股 AI 浪潮席卷全球,但 AI 并非近几年才出现。其起源最早可追溯到上世纪的 1943 年。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科被确立下来。 此后接近 70 年的漫长时间里,AI 的发展起起落落,两次掀起人类对 AI 毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。 此外,知识库中还整理了 OpenAI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-26
数据挖掘评论分析生成可视化的免费方法
目前暂时没有关于数据挖掘评论分析生成可视化免费方法的相关内容。但您可以通过以下途径寻找免费的解决方案: 1. 利用开源的数据挖掘和可视化工具,如 R 语言中的 ggplot2 库、Python 中的 matplotlib 和 seaborn 库等。 2. 搜索在线的免费数据可视化平台,部分平台可能提供一定程度的数据挖掘和评论分析的可视化功能。 3. 参考相关的技术论坛和社区,获取其他用户分享的免费方法和经验。
2025-03-26
介绍把图片变清晰的软件,logo图片上的文字不清晰。
目前有一些可以将图片变清晰的软件,以下为您介绍几种常见的: 1. Adobe Photoshop:功能强大,通过图像增强、锐化等操作来提高图片清晰度。 2. Topaz Gigapixel AI:专门用于图像放大和增强清晰度。 3. Waifu2x:对动漫、插画类图片的清晰度提升效果较好。 您可以根据自己的需求和图片类型选择适合的软件来处理 logo 图片上不清晰的文字。
2025-03-25
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
如何用coze创建工作流 采集生成视频号内容
以下是使用 Coze 创建工作流采集生成视频号内容的步骤: 1. 安装 Coze Scraper 扩展程序至浏览器,完成安装后可手动采集要上传到扣子知识库的内容。更多关于知识库的内容,详情请参考。 登录。 在左侧菜单栏,选择一个工作区。 在工作区内,单击知识库页签。 创建一个知识库或点击一个已存在的知识库。 在知识库页面,单击新增单元。 在文本格式页签下,选择在线数据,然后单击下一步。 单击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 2. 创建工作流: 登录到您的 Coze 账户,导航至个人空间页面。 在个人空间页面上,点击“工作流”按钮,系统会展示之前创建的工作流列表。 在页面的右上角,点击“创建工作流”按钮,打开创建工作流的界面。 在创建工作流的页面上,填写工作流的名称(必须使用英文字符)和描述(一段简洁的文本,帮助模型理解工作流的功能和用途以及触发情境)。 完成必填项后,系统将自动跳转到工作流的编辑页面,其中预设并配置了开始节点和结束节点。开始节点是用户输入内容的起点,结束节点是收尾角色,无论工作流中进行了哪些操作,最终都必须通过结束节点来完成。系统强制要求在工作流的最后步骤中包含结束节点,只有当整个流程的最终动作指向结束节点时,工作流才能够进行试运行和正式发布。 在工作流编辑页面的左侧,有组件库,包括大模型组件(用于执行复杂的数据处理任务)、代码组件(允许运行自定义代码段)、消息组件(用于发送或接收消息)、数据库组件(与数据库交互,执行查询或更新操作)、选择器组件(用于在工作流中进行条件判断和分支选择)。
2025-03-25
如何部署本地AI?
部署本地 AI 可以参考以下内容: 1. 平台选择: 线上平台:出图速度快,不吃本地显卡配置,无需下载大模型,能参考其他创作者作品,但出图尺寸受限。 线下平台:可添加插件,不卡算力,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。 建议充分发挥线上和线下平台的优势,线上找参考、测试模型,线下作为主要出图工具。 2. 开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:电脑不符合要求的可使用在线工具,在线工具分为在线出图和云电脑两种,根据实际情况选择。 配台电脑:不建议一开始就配主机,玩几个月后还有兴趣再考虑,主机硬盘要大,显卡在预算内买最好。 3. 具体步骤(以把大模型接入小米音箱为例): 第四步:填写 API 服务,如智普、硅基等,其他模型的 API 端口参考官方文档。 第五步:语音服务,可参考官方说明,若有问题可自行尝试并反馈。 第六步:启动服务,在最上方可导出编辑内容为 json 格式,每次调整设置都需重置后重新启动,建议回答完毕后增加结束提示语以提高连续对话稳定性。 希望以上内容对您有所帮助。
2025-03-25
trae好用吗?
Trae 国内版是值得使用的。以下是关于 Trae 国内版的一些特点和使用心得: 模型差异:国外版使用国外模型,存在连接、等待、网速等问题;国内版使用国内模型,连接稳定快速,界面根据国内用户习惯定制。 优点: 产品设计周全,常用场景考虑全面,用户体验流畅。 界面友好,交互设计良好,开发者容易上手。 内置的大模型(包括满血版 DeepSeek)无限量免费使用,响应稳定快速。 不足:Builder 模式还不够强,生成的程序有 bug,第一次生成往往跑不起来,需要不断调整,耗时较多。 总的来说,一个完整的 AI IDE 比 AI 插件用起来更容易,有“一体感”,达到了更大的定制程度。随着 AI 的能力进一步发展,AI IDE 的想象空间会更大,也许会成为未来 IDE 发展的主要方向。Trae 国内版刚刚上线,开发团队希望大家下载试用。 从实际体验来看,Trae 表现可圈可点,具有高效的代码生成能力、多技术栈支持和动态调整潜力。
2025-03-25
MCP是什么 ?通往AGI之路中有相关的学习资料吗?
MCP(模型上下文协议)是由 Anthropic 于 2024 年 11 月推出的一项创新标准。它旨在实现大语言模型与第三方数据源的无缝连接,通过支持内容存储库、业务工具和开发环境等多种外部服务,让 AI 模型获取更丰富的上下文信息,从而生成更加精准、相关的智能回答。 Lark 认为,用一句话概括,MCP 是一种通用的方式,向各类大语言模型提供数据源和工具。官网解释:MCP 是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式,可以将其想象成 AI 应用程序的 USBC 接口。 此外,还有文章介绍了如何通过 MCP 连接 Claude 3.7 与 Blender,实现一句话生成 3D 场景的功能。随着 MCP 的崛起,AI 不再是数据孤岛,未来的 AI 智能体将能自主完成更复杂的任务,开启创作的新纪元。
2025-03-25