Navigate to WaytoAGI Wiki →
Home/All Questions
有没有可以查找数据并制作图表的ai工具?
以下是一些可以查找数据并制作图表的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在数据处理和报告撰写方面,您可以: 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。
2025-03-10
langgraph
LangGraph 是一个用于低代码构建 LLM 应用的新库,具有以下特点和发展: 1. 提供了更多自定义和循环行为的可能性,还有可视化工具用于展示和控制语言代理的图,以及查看和分析输入输出。 2. 是 LangChain 的强大扩展,能支持更多 LLM 应用场景和需求,且是独立库,可与其他 Python 库和工具结合使用。 3. 随着发布,众多应用开发者能在应用层随心搭建自己的多专家模型。 4. 解决了 LangChain 中定制预构建链和代理内部结构困难的问题,增加了轻松定义循环和内置内存功能等重要组件。在 LangChain v0.2 中,LangGraph 正成为构建代理的推荐方式,有预构建的 LangGraph 对象,更易定制和修改。其详细介绍和使用方法可参考官方文档和教程。LangChain 团队未来计划包括重写旧链、维护稳定分支、增加更多工具和功能等。
2025-03-10
我想用ai做关于宣传东营的视频
以下是一些利用 AI 制作关于宣传东营视频的方法和步骤: 1. 可以使用飞书多维表格字段插件,通过指令和 AI 生成视频插件来批量生成宣传视频。首先创建一列字段,从字段捷径 AI 中心中选择智谱 AI 生成视频。插件配置较为简单,直接选择视频指令作为文本描述即可批量生成。但视频生成需要一定时间,生成后可点击播放查看效果,如有不满意可重试或手动调整指令。 2. 还有一种无需编程和专业视频制作技能的方法,能以低成本快速制作数字人视频。数字人视频的整体制作流程大致分为三步: 创建视频内容:通过输入文稿内容,确定数字人播出的内容。 生成数字人:通过工具,以及视频内容生产数字人形象及播放语音。 AI 换脸:通过 AI 工具,将数字人的脸转换成指定宣传的形象,以便以自己的品牌形式宣传。 3. 利用 ChatGPT 生成视频脚本,例如设定关键词为“深受年轻人喜欢的电影导演”“长度大约在 1 分钟”“山海经中的神兽在赛博朋克世界”,让其创作宣传视频脚本。之后与 ChatGPT 讨论、修改细节、撰写宣传文案,把控核心内容、优化脚本,最终完成视频脚本定稿。
2025-03-10
我需要把文字转语言,并且生成一些图片,做成视频,用到那些AIr
目前有多种 AI 工具可以帮助您实现将文字转换为语言并生成图片制作视频的需求。例如,一些语音合成工具如百度语音、科大讯飞等可以将文字转换为语言;在图片生成方面,像 DALL·E2、StableDiffusion 等工具表现出色;而制作视频时,您可以考虑使用剪映等软件结合上述生成的语音和图片来完成。
2025-03-10
怎么学习提示词
学习提示词可以参考以下方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,获取提示词相关指南。 学习开发团队和专家的教程与技巧分享。 3. 熟悉常见术语和范例 了解 UI、艺术、摄影等领域的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例,方便后续参考复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式和新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,在社区、Github 等资源中寻找。 4. 多实践、迭代和优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,关注最新成果和方法论。 提示词学习可分为五个维度,舒适的学习顺序是: 1. 场景:直接切入提示词的场景学习,对比不同场景下提示词的使用效果。 2. 工具:使用现成方便的提示词工具,包括 Meta Prompt、Al 角色定制等。 3. 有效语句:学习大量经典论文中提出的提示词语句。 4. 方法论:将有效语句及其原理整合成稳定可控的方法,自动编写稳定的提示词。 5. 思维框架:构建整体的思维框架,融入提示词学习课程。
2025-03-10
长文海报AI
以下是关于长文海报 AI 的相关内容: 一、需求场景 在以下情况下我们会需要自己制作海报: 1. 当想发条朋友圈/微博/twitter 等,干巴巴的文字看起来难以获得较多点赞。 2. 百度图片的图质量差且容易撞图。 3. 相册里关于老爸和自己的照片总是充满尴尬。 二、大致流程 1. 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要完成的风格意向,背景不一定是空白的,可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 三、软件指引 1. 使用工具:无界 AI 网址:https://www.wujieai.cc/ 做图逻辑类似于 SD,其作为出图工具的优势在于: 国内网络即可稳定使用。 有免费出图点数。 支持中文关键词输入。 无需额外下载风格模型,可直接取用。 2. 使用模型:皮克斯卡通 本案例应用场景为朋友圈 po 图,因此画幅比例选择 1:1。 无界 AI 的皮克斯卡通模型位置,根据下图指引找到:二次元模型》模型主题》皮克斯卡通。 3. 关键词类别 场景:向日葵花田、面包店等。 氛围:温馨、温暖等。 人物:父亲和女儿、父亲和儿子。 造型:发型、发色、服饰、配饰(会同时影响到父亲和孩子的形象)。 情绪:笑得很开心、大笑、对视等。 道具:童话书等。 构图:半身、中景等。 画面:色彩明艳。 特殊:……
2025-03-10
文生图
以下是关于文生图的详细教程: 定主题:确定您想要生成的图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 选择 lora:基于生成内容寻找重叠的 lora,以控制图片效果和质量,可参考广场上好看的帖子中使用的 lora。 ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:无脑选择 840000 即可。 Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,不用管语法,单词、短语之间用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,单词和短语组合,中间用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras 较多,也可留意 checkpoint 详情页上模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数一般在 30 40 之间。 尺寸:根据个人喜好和需求选择。 以下是一些常见的文生图模型:腾讯混元、luma、Recraft、文生图大模型 V2.1L(美感版)、美图奇想 5.0、midjourney、快手可图、Flux.1.1、Stable Diffusion 3.5 Large、Imagen 3 网页版
2025-03-10
如何建立个人知识库
建立个人知识库可以通过以下方式: 1. 利用 GPT 打造个人知识库: 将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于“此文作者是谁?”的问题,通过比较 embeddings 向量,提取关联度高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”,发送给 GPT API 以获得回答。 2. 本地部署大模型以及搭建个人知识库: 了解 RAG(检索增强生成)技术,它是利用大模型的能力搭建知识库的应用。 RAG 应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)等 5 个过程。 文本加载器用于将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建定制化知识库: 由于 GPT3.5 一次交互支持的 Token 数量有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。
2025-03-10
总结最近AI的发展史,介绍一下各个AI的情况
AI 的发展历程如下: 1950s 1960s 早期阶段:出现专家系统、博弈论、机器学习初步理论。 1970s 1980s 知识驱动时期:有专家系统、知识表示、自动推理。 1990s 2000s 统计学习时期:机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 2010s 至今深度学习时期:深度神经网络、卷积神经网络、循环神经网络等兴起。 重大突破包括: 1956 年,人工智能被提出。 1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布,擅长用电脑写文章等语言相关任务。 2022 年,DALLE 发布,可根据描述画出想象中的图画。 2023 年,GPT4 发布。 从图灵测试开始,科学家们努力让机器更聪明。如今,AI 已在多个领域取得显著成果,如视频生成、蛋白质研究等,大模型由数据、算法、算力构成,算法不断迭代,数据质量至关重要。当前前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。而且,技术的变革越来越快,新的 AI 应用不断涌现。
2025-03-10
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10