Navigate to WaytoAGI Wiki →
Home/All Questions
秘塔搜索 api接口
以下是关于秘塔搜索的相关信息: 秘塔 AI 搜索是由秘塔科技开发的,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户的搜索效率和体验。 在获取微信公众号文章封面时,可使用秘塔 AI 搜索。输入文章链接,通过一个在线工具(https://www.mgpaiban.com/tool/wxfm.html )即可获取封面。
2025-03-05
deepseek 私有化训练
以下是关于 DeepSeek 私有化训练的相关信息: 模型测试、问题探讨与新模型部署过程: 探讨了模型存在幻觉、答案有概率性等问题,并对比了加提示词前后的情况。 准备从 32B 蒸馏新模型,提及该模型的资源需求及阿里云拍卖机制。 介绍了启动 DSW 获取廉价 CPU 资源,以及部署模型时因库存不足不断加价的过程。 派平台大模型训练与微调实操讲解: 许键分享了抢硬件资源的方法,演示了通过提问蒸馏标注数据。 讲解了在派平台训练模型的流程,包括参数设置、数据集上传等,并展示了训练效果和日志查看。 说明了训练好的模型部署方法,强调训出满意模型需要大量基础知识学习。 模型蒸馏微调演示、平台介绍与问题解答: 许键展示了模型微调后的效果,如幻觉下降等。 介绍了阿里云解决方案,对比了百炼和派平台的差异。 进行了 Q&A,回答了无监督学习微调、训练数据资源、多模态训练标注、Python 代码报错等问题,提及派平台有公用数据集,还举例说明了多模态标注方式。 总结: 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较: R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 智能章节: 许键介绍今日课程重点是云服务器上如何使用 Deepseek R1 及本地部署相关内容,提及派平台免费额度及适用模型。还介绍了自己和社区情况。接着讲解 Deepseek R1 制作过程,包括强化学习概念及示例,阐述其从 Deepseek r e Zero 到 M2 等模型的演变及原理。 主要介绍了 Deepseek R1 模型的构建过程,包括多轮强化学习和微调,还提及蒸馏模型的情况。探讨了不同模型部署所需的显存、内存及成本,对比了各模型在专业领域的能力表现。 介绍了以云基础设施和 GPU 算力资源为底层的派平台。该平台搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-05
怎么搭建智能体
搭建智能体主要包括以下步骤: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后进行测试,但千万不要直接发布。如果工作流中涉及使用个人的 token,为避免他人调用消耗个人费用,可以将 token 作为工作流开始的输入,让用户购买后自行输入再发布。 2. 确定智能体的结构: 按照市场营销逻辑组织智能体结构,例如在品牌卖点提炼中,以品牌卖点提炼六步法为核心流程,加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 同时还包括一些未在结构中体现但在后续应用中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 3. 明确 KnowHow 和 AI 的能力:在搭建智能体前,要明确 AI 的能力边界,例如 AI 不了解公司的主要产品、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等。同时,要清楚 AI 在逻辑推理、数据分析、内容理解和输出方面的能力,将智能体确定为引导型的助手,在寻找卖点时提供更多思考维度。
2025-03-05
普通人如何学AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,想要学习或了解 AI,好的信息源如「即刻」App 的“”等免费圈子。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 如果您还在观望 AI,不知道从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习资源都是免费开源的。
2025-03-05
DeepSeek R1和DeepSeek(联网版)有什么区别
DeepSeek R1 和 DeepSeek(联网版)的区别主要在于以下方面: 1. DeepSeek 只是品牌名称,需要加上具体模型名,如 DeepSeek V3 (类似 GPT4o)或 DeepSeek R1 (类似 OpenAI o1)。 2. DeepSeek R1 是原生通过强化学习训练出的模型,而 DeepSeek 联网版的具体特点未明确提及,但可能在功能和性能上与 R1 存在差异。 3. Deep Research 更擅长生成专业报告,而 DeepSeek Chat 虽然集成搜索,但效果仍有差距。
2025-03-05
批量语言转文字
以下是关于批量语言转文字的相关信息: 支持的语言:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亞語、德國語、希臘語、希伯來語、印地語、匈牙利語、冰岛语、印度尼西亚语、意大利语、日本语、卡纳达语、哈萨克语、韩语、拉脱维亚语、立陶宛语、马其顿语、马来语、马拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波苏尼语、塔加洛语、泰米尔语、泰语、土耳其语、乌克兰语、乌尔都语。 更长输入:默认情况下,Whisper API 仅支持小于 25MB 的文件。若音频文件大于此,需将其分成每个小于 25MB 的块或使用压缩后格式。为达最佳性能,避免在句子中间断开声音以防丢失上下文字信息。可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示:可使用提示提高 Whisper API 生成的转录质量。模型会尝试匹配提示风格,如提示使用大写和标点符号,生成结果更可能使用它们。当前提示系统较其他语言模型受限,仅提供有限控制。示例如下: 对于模型常错识的特定单词或缩略语,提示很有帮助,如改善 DALL·E 和 GPT3 等单词的转录。 为保留分段文件上下文,可用先前片段的转录引导模型,模型仅考虑最后 224 个标记并忽略之前内容。 转录可能会跳过标点符号,可用包含标点符号的简单提示避免。 模型可能省略常见填充词汇,若想保留,可用包含它们的指示。 某些语言有不同书写方式,如简体或繁体中文,默认模型处理可能不按所需风格,添加指示可改进。
2025-03-05
ai agent 好用的软件
以下是一些好用的 AI Agent 软件: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,还有以下相关的新产品: 1. ThinkGPT by Jina AI:来自中国创业团队 Jina AI(作者来自德国),让 LLM 拥有更强的推理与执行能力,构建模块包括记忆、自我改进、压缩知识、推理与自然语言环境,实现的功能有用长期记忆和压缩知识解决有限上下文问题、通过更高阶的推理基元增强 LLM 的单次推理能力、为代码库增加智能决策能力。链接:https://github.com/jinaai/thinkgpt 2. Gradiotools:Hugging Face Spaces 上可以将成千上万个 Gradio 应用程序转换为工具的 Python 库,基于 LLM 的代理可利用这些工具完成任务,目前支持 LangChain 和 MiniChain 代理库,附带一组预先搭建的工具,如 StableDiffusionTool、ImageCaptionTool、ImageToMusicTool 等。
2025-03-05
三维建模
以下为关于三维建模的相关信息: Polycam 发布了免费的 3D 建模工具,应用于元宇宙数字空间的物体孪生采集生成。您只需上传至少 20 张图片或至少 20 秒的视频,Polycam 自动处理并构建 3D 模型。生成后还可编辑,支持 12 种以上格式导出到流行的 3D 软件中,如 Blender、SketchUp、Unreal、Unity 等。100 张图像的云处理建模时间约 1 2 分钟。可在网站以及 iOS 和 Android 应用中创建、编辑和存储 3D 模型,完全免费。Polycam 还能将无人机拍摄的图像转换为广阔的 3D 模型,与所有流行的无人机兼容,包括 DJI Mavic 3、DJI Mini 4 Pro 和 DJI Phantom 4 Pro。其官方网站为: 。此外,摄影测量是一种通过使用照片捕捉物体、地形或结构的精确三维测量和视觉表示的技术,在建筑、考古、地理空间制图和 3D 建模等多个行业中有应用。 Midjourney 图像重纹理模式(retexture)有妙用,通过 Zbrush 和 Midjourney 结合,可实现 3D 建模和 3D 纹理输出,细化物体细节。Midjourney 可自动估算场景形状,重新定义光照、材料和表面细节,增加视觉冲击力。还可根据提示细化图像中的地形轮廓与光照,例如精确估算山的坡度和距离。
2025-03-05
Deepseek 怎么训练模型 到达写作的水准
要将 DeepSeek 训练模型达到写作的水准,可以参考以下方法: 1. 借助 AI 分析好的文章:找出您最喜欢的文章,投喂给 DeepSeek R1。然后进行多次询问,如从写作角度、读者角度分析文章,询问文章的缺点和不足以及改善和提升的空间,对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 2. 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。”的提示词。 3. 根据文章内容对作者进行心理侧写:使用如“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射”的提示词。 此外,DeepSeek 模型具有文风出色、善用大词、发散能力强等特点,但也较难收敛,有时会出现幻觉。从创作角度看,其在文学创作上表现出色,能给予更多自由发挥空间。
2025-03-05
AI医疗
AI 在医疗领域有广泛的应用,包括以下方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了以下最新进展: 1. AI 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作,发现与胶质母细胞瘤相关的新靶基因。 3. AI 帮助抗衰老,筛查出高效的药物候选物。 4. 使用 AI 寻找阿尔兹海默症的治疗方法。 5. AI 帮助早期诊断帕金森。 在蛋白质结构预测和蛋白质合成方面,过去两周有大量突破: 1. AlphaFold 是一种表现出色的 AI 系统,为科学家和药物开发提供巨大帮助。 2. Meta 的蛋白质结构预测 AI 模型 ESMFold 已进行 7 亿次预测。 3. 多伦多大学研究人员开发新的 AI 系统,创造出自然界中不存在的蛋白质。 4. 华盛顿大学的 David Baker 教授团队开发基于 DALLE 的人工智能系统 RF Diffusion,用于生成合适的蛋白质结构。 5. 洛桑联邦理工学院的科学家们开发基于神经网络的新工具 PeSTo,可预测蛋白质相互作用。 6. 萨里大学开发人工智能系统,用于识别个体细胞中的蛋白质模式。 7. 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,目标是将其制成防弹材料。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514
2025-03-05