Navigate to WaytoAGI Wiki →
Home/All Questions
有做ppt的ai工具推荐么?
以下是一些好用的做 PPT 的 AI 工具推荐: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 扩展阅读: 1. 《》 2. 《》 另外,还有以下工具也值得关注: 1. 爱设计 2. 闪击 3. Process ON 4. WPS AI 请注意,部分工具可能为后续补充,在部分提示词、截图中不存在。每一款工具都有其独特的优势,能助您快速、高效地完成 PPT 设计。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
小白如何入门AI
对于小白入门 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,对于小白入门 AI 编程,比如用 Trae 开发一个小工具,纯 HTML 页面的小工具或小游戏是相对简单的选择。AI 生成.html 文件,直接双击在浏览器打开就能用。Trae 发布了 Windows 版本,可利用其免费的 claude api 进行测试。 元子提供了小白的 30min Cursor AI 编程上手步骤: 分辨 Chat 和 Composer 两个模式。Chat 可与大模型对话,Composer 能即时反馈,直接创建文件、填写代码。 例如在 Composer 模式下输入需求“给我创建一个 2048 的网页游戏吧”,生成文件后可直接打开文件夹中的 index.html 查看运行效果。若环境报错,可截图询问。
2025-04-08
找一下翻译插件
以下为您介绍一些翻译插件和方法: 1. 提示词翻译副本 Alekpet: 插件地址:安装后重启 ComfyUI 即可。 将 CLIP 文本编码器转换为输入,连接翻译文本节点即可使用。 链接:https://github.com/kingzcheung/ComfyUI_kkTranslator_nodes 2. 提示词翻译副本 Prompt_Translate_to_English: 用的百度翻译 API 方法如下: 下载节点压缩包,并将它放在 custom_nodes 文件夹。 去百度翻译 Api 和登记册开发人员的帐户中得到您的 appid 和 secretKey。 百度翻译平台地址:https://fanyiapi.baidu.com/manage/developer 。 打开文件 config.py 在记事本/其他编辑,填您的 secretKey 在引号的 secretKey ="",保存文件重启 Comfy 即可。 3. 翻译一份英文 PDF 完整地翻译成中文的方法: DeepL(网站): 点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件): 安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 calibre(电子书管理应用): 下载并安装 calibre,并安装翻译插件「Ebook Translator」。 谷歌翻译(网页): 使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页): 点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2025-04-08
传统产品经理如何转AI产品经理?
传统产品经理若要转型为 AI 产品经理,需要注意以下方面: 1. 掌握算法知识: 理解产品核心技术,有助于做出更合理的产品决策。 与技术团队有效沟通,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,更好地应对 AI 技术的迅速发展。 提升产品竞争力,发现产品的独特优势并提出创新特性。 增强数据分析能力,处理和分析 AI 算法涉及的数据。 2. 了解相关技术原理和框架: 如思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,可在问题后加“请你分步骤思考”。 RAG(检索增强生成),将外部知识库切分转成向量存于向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 PAL(程序辅助语言模型),2022 年论文提出,对于计算问题不让 AI 直接生成结果,而是借助 Python 解释器等工具。 ReAct 框架,2022 年论文提出,将 reason 与 action 结合,让模型动态推理并与外界环境互动,可借助 LangChain 等框架简化构建流程。 3. 关注技术论文和前沿动态:虽然小白直接看技术论文有难度,但仍需完成一定知识储备,也可借助 AI 辅助阅读。同时,多参考相关的科普入门视频和访谈,如林粒粒呀的视频和安克创新 CEO 阳萌的访谈等。
2025-04-08
我想从零基础学习成为一名ai产品经理,我该学习哪些知识内容,请把这些知识内容做个排序。
以下是从零基础学习成为一名 AI 产品经理所需学习知识内容的排序: 1. 入门级: 通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉行业竞争格局与商业运营策略。 3. 落地应用: 有一些成功落地应用的案例,产生商业化价值。 同时,AI 产品经理还需要具备以下技能和知识: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能准确评估某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关知识,提升数据分析能力。 此外,了解技术框架,对技术边界有认知,关注场景、痛点、价值也是很重要的。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
去水印
以下是一些 AI 去水印的工具: 1. AVAide Watermark Remover:在线工具,使用 AI 技术,支持多种图片格式(如 JPG、JPEG、PNG、GIF 等),操作简单,上传图片、选择水印区域,保存并下载处理后的图片,还能去除文本、对象、人物、日期和贴纸等。 2. Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,自动检测并移除水印,处理完成后可保存生成的文件,适合需快速去水印及在社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹,支持直接粘贴图像或上传手机图像,操作简便。 4. ProPainter:一键移除视频内物体或水印,基于 E2FGVI 实现,和前几天发的 OmnimatteRF、TrackAnything 类似,项目:https://t.co/psub7dIymc ,Github:https://github.com/sczhou/ProPainter ,TrackAnything:https://github.com/gaomingqi/TrackAnything ,E2FGVI:https://github.com/MCGNKU/E2FGVIOmnimatteRF ,https://omnimatterf.github.io ,https://x.com/xiaohuggg/status/1703626100365279688?s=20 。 5. https://anieraser.media.io/app:去水印效果好但收费。 6. https://onlinevideocutter.com/removelogo:可以去水印,效果一般。 这些工具各有特点,您可根据具体需求选择最适合的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2025-04-08
最好的代码模型是?
目前对于“最好的代码模型”没有一个绝对的定论。以下为您介绍一些常见且受到关注的代码模型: 许多人认为 3.5 Sonnet 是较好的代码模型,但它没有相关论文。 开放代码模型方面,您可以从 DeepSeekCoder(https://ar5iv.labs.arxiv.org/html/2401.14196?_immersive_translate_auto_translate=1)、Qwen2.5Coder(https://arxiv.org/html/2409.12186?_immersive_translate_auto_translate=1)或 CodeLlama 中选择。 智谱·AI 开源模型列表中的代码模型有: CodeGeeX26B:是 CodeGeeX 的第二代模型,基于 ChatGLM2 架构加入代码预训练实现,在多项指标上有性能提升。 CodeGeeX26Bint4:CodeGeeX2 的量化版本。 CodeGeeX13B:第一代 CodeGeeX,具有 130 亿参数的多编程语言代码生成预训练模型。 需要注意的是,最好的模型将来自优秀的人类数据和合成数据的结合,同时对于模型的评估还涉及到如“氛围感”等较主观和难以量化的方面。
2025-04-08
aigc降重
AIGC 降重相关知识如下: AIGC(AIGenerated Content)是指具有文本、图片、音频、视频等内容生成能力的模型及相关技术。生成式 AI 能够赋能诸多领域,如语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,音视频生成利用扩散模型、GANs 和 Video Diffusion 等。 AIGC 应用可能引发多种风险,包括内生风险(算法的不可解释性和不可问责性,代码开源可能带来的安全和伦理担忧)、数据隐私问题(数据泄露、匿名化不足、未经授权的数据共享等)和知识产权风险(作品侵权、不当竞争等)。 相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。在应用中,需重伦理道德,不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义,不得宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容。GenAI 工具和 AIGC 提供者应注意在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。
2025-04-08