Navigate to WaytoAGI Wiki →
Home/All Questions
ai数字人直播
以下是关于 AI 数字人直播的相关信息: 社区 AI 讲师招募要求: 具有丰富的企业端 AI 实践经验,涵盖多个场景,如 AI 生成爆款内容、公域阵地场景(包括矩阵号和 IP 号搭建、短视频和直播等)、私域阵地场景(朋友圈、小红书、社群、个人 IP 等)、服务自动化工具、快速搭建数据分析看板、跨境电商场景(如 tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等)。 具备良好的表达能力,能清晰阐述技术和业务方面的沉淀。 招募流程:感兴趣的小伙伴提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),预约电话面谈,面谈通过后进行公开课试讲。 AI 数字人直播盈利方式: 直接销售数字人工具软件,分为实时驱动(一年 4 6 万往上)和非实时驱动(一个月 600 元,效果差,市场价格混乱)两类。 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;虚拟商品,如门票、优惠券等。 电商直播中店播效果较好,数据基本能保持跟真人一样;不适用于促销场景和服装品类。 AI 直播的壁垒和未来市场格局: 长期来看技术上无壁垒,目前仍有技术门槛,如更真实的对口型、更低的响应延迟等。 不会一家独大,可能有 4 5 家一线效果的公司,大多为二三线效果公司。 能把客户服务好、实现规模化扩张的公司更有价值,疯狂扩代理割韭菜、不考虑客户效果的公司售后问题多。 有资源、有业务的大平台下场可能带来降维打击。 此外,昨晚参与了一场 AI 数字人(虚拟人)的会议讨论,相关总结可查看飞书云文档,会议原声链接也有上传。有从业者认为:现在做电商直播可能只是因为前期宣传和未发现其他更好场景;在电商领域,数字人配套的运营服务才是关键,续费客户多是因为服务;店播中数字人直播效果较好,实时互动必要性不高;不建议商家依赖数字人,目前阶段数字人服务多为辅助。
2025-03-31
如何利用AI打造专属知识库
利用 AI 打造专属知识库可以通过以下步骤: 1. 拆解创作任务:将复杂的任务拆解到合适的颗粒度,为 AI 提供方法论和明确的输出格式。例如,拆解创作“科幻预见未来”的步骤,确定关键任务节点和围绕其展开的主线任务。 2. 建立定向知识库: 私人知识库中的内容一般包括日常从互联网收集的优质信息以及个人日常的思考和分享。 可以将相关内容导入到特定工具(如 flowith 的知识花园)中作为 AI 可调用的知识库。 对于导入的内容,可打开智能拆分模式,让 AI 自动分析优化拆分逻辑,形成知识“种子”。 3. 工作流中配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(适合理解语义关联度和跨语言查询场景)、全文检索(适合特定名称、专有名词等场景)、混合检索(结合前两者优势)。 最大召回数量:选择返回给大模型使用的内容片段数量,数值越大返回越多。 最小匹配度:根据设置选取要返回的内容片段,过滤低相关度结果。需多轮测试找出最优值。 此外,基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 1. 训练专有大模型:效果虽好,但成本高,更新难度大,并非当下主流方案。 2. 利用 RAG(检索增强生成)技术。
2025-03-31
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 在一个 RAG 的应用中,可以抽象为以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-03-31
推荐一下用ai做PPT较好的工具
以下是一些用 AI 做 PPT 较好的工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 在国内 AI 辅助制作 PPT 的产品中,爱设计 PPT 值得推荐。它背后拥有实力强大的团队,对市场需求有敏锐洞察力,成功把握住 AI 与 PPT 结合的市场机遇,已确立市场领先地位。对于经常制作 PPT 的人,如商务人士、教育工作者、学生等,都是值得尝试的工具。
2025-03-31
liblib ai 教程
以下是关于 Liblibai 的简易上手教程: 一、概念与功能说明 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长。并非越多越好,效果提升非线性,过多后效果增长曲线放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小 AI 生成内容有限,太大 AI 易放飞自我。如需高清图,可设中等尺寸并用高分辨率修复(以后再学)。 3. 生成批次:用本次设置重复生成的批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大图像更接近提示,但过高会使图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,固定种子后可对图片进行“控制变量”操作,如修改提示词、修改 clip 跳过层等。首次生成图时无种子,不用管。 7. ADetailer:面部修复插件,可治愈脸部崩坏,高阶技能,后续学习。 8. ControlNet:控制图片中特定图像,用于控制人物姿态、生成特定文字、艺术化二维码等,高阶技能,稍后学习。 9. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 二、简明操作流程 1. 文生图 定主题:明确生成图片的主题、风格和表达信息。 选择 Checkpoint:根据主题找贴近内容的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,控制图片效果及质量。 设置 VAE:无脑选 840000 那一串。 CLIP 跳过层:设成 2。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开,不管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词、短语组合,用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 后,一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 尺寸:根据喜好和需求选择。 生成批次:默认 1 批。 三、prompt 简易技巧 能简单控制图。 虽然视频教程很多,但看图文说明更方便。Liblibai 网站(https://www.liblib.ai/)可点击进入免费在线生图。若看完不明白,可评论区交流或添加微信:designurlife1st 沟通。
2025-03-31
liblib ai 使用教程
以下是 Liblibai 的使用教程: 简明操作流程: 1. 定主题:明确您想要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. 设置 CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,一般在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 概念与功能说明: 1. 迭代步数:AI 调整图片内容的次数,并非越多越好,需根据采样器特征选择。 2. 尺寸:图片生成的大小,太小或太大都有影响。 3. 生成批次:用本次设置重复生成的批次数。 4. 提示词引导系数:指图像与 prompt 的匹配程度,过高会影响图像质量。 5. 随机数种子:固定后可对图片进行“控制变量”操作。 6. ADetailer:面部修复插件,高阶技能。 7. ControlNet:控制图片中特定图像,高阶技能。 8. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 其他概念: 1. 首页 模型广场:有其他用户发布的模型,收藏和运行数多的模型在首页前排,可查看模型详情并加入模型库。 2. Checkpoint:生图必需的基础模型,必选。 3. lora:低阶自适应模型,可选可不选,用于控制细节。 4. VAE:类似于滤镜,调整生图饱和度,选择 840000 即可。 5. CLIP 跳过层:一般设为 2,早期不用过多关注。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:让 AI 用的生图算法。
2025-03-31
我是一个ai新手,请根据知识库现有的内容帮我拟一份学校ai的学习计划,以及更新知识的跟进和学习
以下是为您拟定的学校 AI 学习计划,以及知识更新的跟进和学习方法: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 希望这份学习计划对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-31
AI时代如何做好教学设计
在 AI 时代做好教学设计可以从以下几个方面入手: 1. 选题探索:当学生关注教学工具的选择时,如“听书软件对学生学习的好处有哪些”,可从提升阅读理解能力、拓展知识面、增强语言表达能力、促进想象力发展、培养学习兴趣等多个维度进行分析。 2. 工具分析:对于工具对比的问题,如“音频软件/听书软件可以从哪几个方面进行对比”,提供系统的比较维度,包括用户界面、功能特性、文件格式支持、价格策略、书库资源、阅读体验等,引导学生构建评估框架,进行系统思考。 3. 教学设计:针对具体课程,如“为八年级上册课文《中国石拱桥》进行学情分析”,从教学目标、教学内容、教学方法、教学流程、注意事项等方面进行全面分析,体现教育专业知识,提供教学设计指导。 4. 课堂情境:当学生思考课堂管理问题,如“描写一段学生打闹的场景”,生动描写课堂情境,并给出教师的适当管理策略,提供情境化的案例和解决方案。 此外,还包括以下方面: 1. 教材内容分析:包括基本教学内容和学习重难点。 2. 教学目标描述:涵盖知识与技能、过程与方法、态度与价值观。 3. 学习者特征分析:了解聪明学生的认知水平、学习特点、学习习惯、学习任务特点等。 4. 教学策略选择与设计:教学方法有讲解、演示、个别指导、练习、自主学习、小组讨论、全班交流、合作学习等;情境创设包括真实情境、问题性情境、虚拟情境等。资源应用方面,根据实际情境选择或组合,同时注意安排、资源、模版、量规,但可能缺少现场指导与顾问。 在具体的教学环节中: 1. 教学方法:对于“卖炭翁的教学模式与策略”,提供兴趣导向、实践引导、以小见大、激励自主等多种策略。 2. 教案编写:回答“教学设计的总流程”,提供引入、阅读理解、重点内容讲解、交流互动、拓展延伸、总结归纳等完整流程。 3. 教学创新:针对“怎么对一元二次方程组进行教材分析和学情分析”,从教材内容、学生认知特点、教学难点等方面进行分析。 4. 资源推荐:对于“评分高的教育电影”,推荐优质影片并简述其教育价值。 5. 班级管理:对于“有助于处理小学学生矛盾的教育类书籍”,推荐并分析相关书籍的实用价值。
2025-03-31
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-31
function call
Function Calling 是一种将 AI 模型(如 ChatGPT、谷歌 Gemini 等)的能力与外部工具和 API 连接起来的方法。 在 ChatGPT 中: 为让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制重要且复杂。 OpenAI 发布函数调用及其他 API 更新后,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象。 本地写函数执行查询操作,如 this.app.mysql.select,函数名 getSqlQuery,参数:sql,更灵活。 在谷歌 Gemini 中: 讲解了 Function Calling 是什么及具体用法。 以从事金融业务为例,如搜索欧元兑美元的当前汇率,使用前需做好配置,可使用 Gemini 1.5 Flash 模型。 函数调用带来了多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-03-31