Navigate to WaytoAGI Wiki →
Home/All Questions
AI服务器配置
以下是关于 AI 服务器配置的相关内容: 对于 Coze AI 机器人对接微信的服务器配置: 1. 如果按照上一篇教程操作,此次配置只需修改容器编排模板。最新的容器编排模板如下,同时提供无描述性的参考配置方便新手直接参考使用。 2. 若之前没有容器编排模板,新建一个即可,新建和修改逻辑类似。 3. 更新后的编排模板,若之前创建过相似机器人容器编排服务,建议先删除以防冲突,删除步骤如下。 4. 基于新的编排模板创建新的容器编排,然后启动服务。 5. 服务启动成功后,进入 COW 服务扫码绑定微信机器人,具体步骤参考上一篇入门教程。 对于视频相关的 AI 服务器配置: 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole ,并根据以下配置购买。 2. 购买并付款完成后,回到服务器“控制台”。 3. 点击服务器卡片空白处添加防火墙,添加 8887、8080 端口。 4. 点击右上角“登录”按钮,扫码验证后在命令行窗口中操作,注意复制粘贴代码的方式和命令执行完毕的标志。 5. 在命令行中依次输入相关命令。 6. 保存并打开外网面板地址,输入账号和密码。
2025-04-10
什么是AIGC
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 又称为生成式 AI,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介很多,包括但不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言等。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-04-10
comfyUI是什麼?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 但也存在一些劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),不过也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2025-04-10
吴恩达
吴恩达(Andrew Ng)是人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域贡献显著,是在线教育平台 Coursera 的联合创始人。 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain),还曾担任百度公司首席科学家并领导百度研究院。以深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 他致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上极受欢迎,吸引全球数百万学生参与。通过教学和研究工作,对人工智能领域发展影响深远。 吴恩达还参与了红杉 AI Ascent 2024 会议。此外,他有一门生成式 AI 入门视频课程: 。 内容由 AI 大模型生成,请仔细甄别。
2025-04-10
AI PPT
以下是关于 AI PPT 的相关信息: AiPPT: 一句话 AI 生成 PPT,智能生成 PPT 内容大纲与匹配正文。 任选各行业海量模板,智能完成排版设计与关联配图,美观省时。 支持在线编辑与演示、一键换色与字体调整、动效导出下载等高级功能,助您轻松制作高水准 PPT。 用途包括制作企业宣传的幻灯片、创建学术报告演示文稿、设计教学课程的课件、制作个人简历、编辑年终总结报告、生成产品发布和推广的演示材料、为教育学科编制互动式课本、设计商业计划书的提案、定制营销策划提案等。 其他 AI PPT 工具: Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,可能还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2025-04-10
如何用runaway做一个1min左右的AI短片
以下是使用 Runway 制作 1 分钟左右 AI 短片的步骤: 1. 访问 Runway 网页(https://runwayml.com/),在右上角点击“Sign Up”进行注册。输入邮箱与基础信息,完成邮箱验证。 2. 新注册用户会有 125 个积分进行免费创作(约为 100 秒的基础 AI),选择“Try For Free”模式。 3. 制作视频: 选择左侧工具栏“Generate videos”(生成视频)。 选择“Text/Image to Video”(文字/图片生成视频)。 将图片拖入框内。 选择一个动画系数。 点击生成 4 秒视频。 下载视频。 需要注意的是,在实际制作过程中可能会遇到一些问题,比如动画效果一般、局部物体运动控制等。可以结合其他工具如 Pika、Dalle3 等来解决,同时在剪辑和高清化方面,也有不同的选择和注意事项。比如剪辑可以使用剪映,但对于更长篇幅或追求更好效果可能需要使用 PR/FCP/达芬奇等传统剪辑软件。高清化可以使用 Topaz Video AI,但可能对电脑配置有要求。在声音处理方面,可以通过标点符号改变 11labs 的语音效果,也可以使用国内的魔音工坊等工具。
2025-04-10
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
prompt 框架
以下是关于 prompt 框架的相关内容: 格式: 常见的格式包括 Markdown(兼容性强,适用于写公众号文章、百家号文章等)、无序列表、有序列表、表格(更清晰直观,适用于对比数据等)、图片(具有随机性,可搭配生成 PPT)、二维码(将链接以二维码图片展示)、Latex 公式(面对数学问题时使用,能渲染出美观的公式,但目前官网对于行内公式的渲染不稳定)、代码(适合程序员指定需要撰写的代码,也方便复制内容)、JSON 格式(ChatGPT 可以以结构化数据形式输出信息,方便应用程序处理和解析,常用于程序员开发应用程序调用 API 时)。 关键框架: ICIO 框架:包括指令(执行的具体任务)、背景信息(提供执行任务的背景和上下文)、输入信息(大模型需要用到的信息)、输出信息(明确输出的具体要求,如字数、风格、格式)。 BROKE 框架:通过 GPT 的设计提示提升整体反馈效率,包括提供足够背景信息、角色设定、目标明确、结果定义、调整。 CRISPIE 框架:包括能力和角色(期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文)、声明(简洁明了的说明希望完成的任务)、个性(回应的风格、个性或者方式)、实验(提供多个回答的示例)。 律师使用 Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):例如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):明确希望 AI 以什么风格或方式回答。 Experiment(举例)。 零样本思维链(Zero Shot Chain of Thought,ZeroshotCoT):研究了 CoT prompting 的后续发展,引入了一种简单的零样本提示方法。在问题结尾添加相关提示词,能让大语言模型生成回答问题的思维链,并从中提取出更准确的答案。
2025-04-10
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于一些原因被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。
2025-04-10
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),通常指一种能够完成任何聪明人类所能完成的智力任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 是朝着 AGI 迈出的巨大一步。Sam Altman 认为确保 AGI 造福全人类是使命,人工通用智能是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-04-10