Navigate to WaytoAGI Wiki →
Home/All Questions
stable diffusion是免费还是收费
Stable Diffusion 是开源免费的。其具有以下特点和使用规则: 优势在于开源免费、可以本地化部署、创作自由度很高,但需要较好的电脑配置,尤其是显卡。 所有代码均在 GitHub 上公开,大家可以拷贝使用。 免费用于非商业用途:个人和组织可以免费将该模型用于非商业用途,包括科学研究。 免费用于商业用途(年收入高达 100 万美元):初创公司、中小型企业和创作者可以免费将该模型用于商业目的,只要其年总收入低于 100 万美元。对于年收入超过 100 万美元的组织,需联系相关方咨询企业许可证。
2025-03-05
如何用 ai 写论文
利用 AI 写论文可以按照以下步骤进行: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查论文的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保论文的原创性,并进行最后的格式调整。 在论文写作领域,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用 AI 写论文时,还需注意以下几点: 1. AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。 2. 提高提示质量,避免基本提示导致无聊的写作,通过与系统互动提升写作效果。 3. 让 AI 帮助完成没时间做的任务,如写邮件、创建销售模板等。 4. 利用 AI 激发自己做得更好,从困难挑战中解脱出来保持动力。 总之,在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信,结合自身写作风格和需求选择合适的辅助工具。
2025-03-05
清华大学deepseek讲解视频
以下是为您找到的与清华大学和 DeepSeek 相关的信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 《DeepSeek 的秘方是硅谷味儿的》提到 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 的成功被视为中国式创新的典范,但其独特之处在于其更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 但未找到清华大学 deepseek 讲解视频的直接相关内容。
2025-03-05
清华大学deepseek讲解
以下是关于 DeepSeek 的相关信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 关于 DeepSeek 有众多媒体报道和网络文章,如中国新闻网的《突然爆火!中国“神秘力量”震动美国科技圈》、海峡都市报的《“华裔天才”亚历山大·王:DeepSeek 的 AI 大模型发布可能会“改变一切”》、每日经济热点新闻的《突然火爆全网!Deepseek 被“挤”到宕机!创始人 17 岁考入浙大,36 岁管理千亿私募!公司多岗位招新,实习生日薪最高上千元》等。 以上信息涵盖了 DeepSeek 在技术、评价、媒体报道等方面的情况。
2025-03-05
AIGC大模型是什么?
AIGC 大模型是一个较为复杂的概念,下面为您详细解释: 首先,生成式 AI 生成的内容称为 AIGC。 相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是指电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习和强化学习。 4. 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-05
学习ai对普通人的生活有什么意义
学习 AI 对普通人的生活具有多方面的重要意义: 1. 提供更高效的个人助理服务:人工智能模型将很快能作为自主的个人助理,代表您执行特定任务,如帮助协调医疗护理。 2. 促进教育方式的变革:人工智能工具在教育领域有创新的应用空间,如通过交流互动辅助学习,但需要正确引导使用,避免过度依赖。 3. 助力艺术创作:在艺术领域,人们可以与计算机合作作画,发挥自身的创造力。 4. 提高工作效率:普通人可以通过合适的软件和学习内容,运用 AI 来提升工作效率。 5. 带来科技便利与幸福:AI 是未来的必然方向,简单试用能让普通人更快受益,使生活因科技而更加便利和幸福。 然而,在推广 AI 的过程中也面临一些挑战,如需要降低计算成本以使其更加普及,避免其成为有限资源导致战争或成为富人的工具。同时,要正确引导使用,避免其带来负面影响。
2025-03-05
吴恩达中文课程
以下是关于吴恩达中文课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 目录: https://github.com/zard1152/deepLearningAI/wiki 介绍: 有两类大语言模型:基础 LLM 和指令微调 LLM。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会进一步使用人类反馈强化学习(RLHF)技术来优化。 原则与技巧: 两个提示的关键原则:尽可能保证下达的指令“清晰、没有歧义”;给大模型思考的时间,以及足够的时间去完成任务。
2025-03-05
吴恩达
吴恩达(Andrew Ng)是在人工智能领域极具声誉的科学家和教育者。 他在机器学习、统计学和人工智能领域贡献卓著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上广受欢迎,吸引全球数百万学生参与。 在红杉 AI Ascent 2024 会议中,吴恩达是与会的人工智能领导者之一。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算能力的重要性,其想法在一些论文中得到支持。 内容由 AI 大模型生成,请仔细甄别。
2025-03-05
AI系统
以下是关于《促进创新的人工智能监管方法》的相关内容: 在附件 A:实施部分,对于对个人有法律或类似重大影响的情况,监管机构需要考虑要求人工智能系统运营商向受影响方提供适当决策理由的适用性。人工智能系统应遵守特定监管领域内与个人脆弱性相关的监管要求。监管机构需依据现有权力和职责,考虑人工智能系统的使用如何改变个人的脆弱性。同时,应考虑可用的解决人工智能公平、偏差缓解和伦理考虑的技术标准(如 ISO/IEC TR 24027:2021、ISO/IEC 12791、ISO/IEC TR 24368:2022),以明确监管指导并支持风险处理措施的实施。 在责任和治理方面,预计监管机构需要确定谁对现有法规和原则的合规负责。在实施的初始阶段,监管机构可能会就如何证明责任提供指导。从中长期来看,政府可能会就责任如何适用于生态系统内的特定参与者发布额外指导,并提供关于治理机制的指导,包括潜在的适当风险管理和治理流程(包括报告职责)范围内的活动。 此外,文中还提供了一些人工智能系统的说明性示例,如客户服务聊天机器人中的自然语言处理,其具有适应性和自主性,能根据大量数据集训练来识别普通人类语言中的统计模式,随着系统从每次新体验中学习,个性化程度可能会提高,但其可能会无意中包含不准确或误导性信息。自动化医疗分诊系统能根据医疗数据集、患者记录和实时健康数据分析预测患者病情并生成信息,但也存在潜在风险。 当人工智能系统的可解释性不足时,供应商和用户可能会无意中违反法律、侵犯权利、造成伤害并危及人工智能系统的安全。人工智能系统应根据其上下文显示适当的可解释性水平。 在公平原则方面,人工智能系统不应损害个人或组织的合法权利,不应不公平地歧视个人或造成不公平的市场结果。参与人工智能生命周期各个阶段的行为者应考虑适合系统使用、结果和相关法律应用的公平定义。监管机构可能需要制定并公布相关描述和说明。
2025-03-05
我想知道AI在财务领域的应用
AI 在财务领域有以下应用: 1. 更动态的预测和报告: 帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化。 从更广泛、更复杂的数据集中发现模式,为预测建议输入,并适应模型为公司决策提供依据。 自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 2. 会计和税务: 综合、总结税法,并就潜在扣除项提出可能答案。 3. 采购和应付账款: 自动生成和调整合同、采购订单和发票以及提醒。 4. 税务工作: 利用引刀 AP 创建网页实现智能解答税务问题。 结合飞书避免信息泄露和实现自动回复。 5. RPA 应用: 控制桌面软件,实现办公流程自动化,如开票、网银流水下载等。 替代电脑办公中的重复有逻辑工作,为企业降本增效。
2025-03-05